
Proceedings of the

2005 Automated Software Engineering

Workshop on Software Certificate Management

(SoftCeMent’05)

Long Beach, California, USA

November 8, 2005

Sponsored by the

Association for Computing Machinery

Special Interest Group on Software Engineering (SIGSOFT)

Special Interest Group on Artificial Intelligence (SIGART)

ii

Foreword

This volume contains the position papers presented at the Workshop on Software Certificate Management (SoftCe-
Ment’05), held in conjunction with the 20th IEEE/ACM International Conference on Automated Software Engineer-
ing, on November 8th, 2005, in Long Beach, California.

Software certification demonstrates the reliability, safety, or security of software systems in such a way that it can be
checked by an independent authority with minimal trust in the techniques and tools used in the certification process
itself. It can build on existing validation and verification (V&V) techniques but introduces the notion of explicit
software certificates, which contain all the information necessary for an independent assessment of the demonstrated
properties. Software certificates support a product-oriented assurance approach, combining different techniques and
forms of evidence (e.g., fault trees, “sign-offs”, safety cases, formal proofs, ...) and linking them to the details of the
underlying software.

A software certificate management system provides the infrastructure to create, maintain, and analyze software
certificates. It combines functionalities of a database (e.g., storing and retrieving certificates) and a make-tool (e.g.,
incremental re-certification). It can also maintain links between system artifacts (e.g., design documents, engineering
data sets, or programs) and different varieties of certificates, check the validity of certificates, provide access to explicit
audit trails, enable browsing of certification histories, and enforce system-wide certification and release policies. It
can at any time provide current information about the certification status of each component in the system, check
whether certificates have been audited, compute which certificates remain valid after a system modification, or even
automatically start an incremental recertification.

The main goal of this workshop is to explore new technologies, underlying principles, and general methodologies for
supporting software certificate management.

Ewen Denney Bernd Fischer Mark Jones Dieter Hutter

Organizers

Program Committee

Ewen Denney .RIACS/NASA Ames, USA
Bernd Fischer. .RIACS/NASA Ames, USA
Sofia Guerra. .Adelard, England
Kelly Hayhurst. .NASA Langley, USA
Connie Heitmeyer . Naval Research Laboratory, USA
Dieter Hutter . DFKI, Germany
Andrew Ireland .Heriot-Watt University, Scotland
Mark Jones . Portland State University, USA
Christoph Lüth .University of Bremen, Germany
William B. Martin. .National Security Agency, USA
Viswa (Vdot) Santhanam . Boeing, USA

iii

iv

Table of Contents

Software Certification and Software Certificate Management Systems . 1

Ewen Denney and Bernd Fischer (RIACS/NASA Ames)

Evidence Management in Programatica .7

Mark P. Jones (Portland State University)

Qualification of Software Development Tools for Airborne Systems Certification .13

Andrew Kornecki (Embry-Riddle Aeronautical University) and Janusz Zalewski (Florida Gulf Coast University)

A Method for Verification and Validation Certificate Management in Eclipse . 19

Mark Sherriff and Laurie Williams (North Carolina State University)

Certificate Management: A Practitioner’s Perspective .23

Mike Whalen (Rockwell-Collins)

Certifying Software Fit For Purpose . 27

Graeme Parkin and Peter Harris (NPL)

On the Scalability of Proof Carrying Code for Software Certification .31

Andrew Ireland (Heriot-Watt University)

Software Certification for Temporal Properties with Affordable Tool Qualification 35

Songtao Xia and Ben Di Vito (NASA Langley)

Reusing Proofs when Program Verification Systems are Modified . 41

Bernhard Beckert, Thorsten Bormer and Vladimir Klebanov (University of Koblenz-Landau)

Software Certification Management: How Can Formal Methods Help? .47

Dieter Hutter (DFKI)

Application of a Commercial Assurance Case Tool to Support Software Certification Services 51

Luke Emmet and Sofia Guerra (Adelard)

v

vi

Schedule

All talks will be held at the Renaissance Ballroom 3.

Breakfast

8:00-8:30 Main lobby

Opening

8:45-9:00 Welcome

Session 1:

9:00-9:30 Ewen Denney, Bernd Fischer:

Software Certification and Software Certificate Management Systems

9:30-10:00 Mark P. Jones:

Evidence Management in Programatica

10:00-10:30 Andrew Kornecki, Janusz Zalewski:

Qualification of Software Development Tools for Airborne Systems Certification

Coffee

10:30-11:00 Main lobby

Session 2:

11:00-11:30 Mark Sherriff, Laurie Williams:

A Method for Verification and Validation Certificate Management in Eclipse

11:30-12:00 Mike Whalen:

Certificate Management: A Practitioner’s Perspective

Lunch

12:00-14:00 Lunch at the Rockbottom Brewery

Session 3:

14:00-14:30 Discussion

14:30-15:00 Graeme Parkin, Peter Harris:

Certifying Software Fit For Purpose

15:00-15:30 Andrew Ireland:

On the Scalability of Proof Carrying Code for Software Certification

Coffee

15:30-16:00 Main lobby

Session 4:

16:00-16:30 Songtao Xia, Ben Di Vito:

Software Certification for Temporal Properties with Affordable Tool Qualification

16:30-17:00 Bernhard Beckert, Thorsten Bormer, Vladimir Klebanov:

Reusing Proofs when Program Verification Systems are Modified

17:00-17:30 Dieter Hutter:

Software Certification Management: How Can Formal Methods Help?

Closing Remarks

vii

Software Certification and Software Certificate
Management Systems

(Position Paper)

Ewen Denney and Bernd Fischer

USRA/RIACS, NASA Ames Research Center, Moffett Field, CA 94035, USA
{edenney,fisch}@email.arc.nasa.gov

1 Introduction

Software certification demonstrates the reliability and safety of software systems in
such a way that it can be checked by an independent authority with minimal trust in
the techniques and tools used in the certification process itself. It builds on existing
software assurance, validation, and verification techniques but introduces the notion of
explicit software certificates, which contain all the information necessary for an inde-
pendent assessment of the demonstrated properties. A software certificate management
system (SCMS) provides a range of certification services. It maintains the links between
different system artifacts (e.g., design documents, engineering data sets, or programs)
and different varieties of certificates, checks the validity of certificates, provides access
to explicit audit trails, enables browsing of certification histories, and enforces system-
wide certification and release policies.

We believe that a customizable SCMS with support for automated re-certification
of diverse artifacts should become an essential part of any effective development pro-
cess. Its primary impact is to increase the reliability and safety of software systems by
providing automation support for their audit. A SCMS can at any time provide cur-
rent information about the certification status of each component in the system, check
whether certificates have been audited, compute which certificates remain valid after a
system modification, and automatically start an incremental re-certification.

We are particularly interested in the combination of software certification with au-
tomated code generation and formal verification methods. Here, our focus is on the
related questions of how code generators can support the certification process, and how
software certification can be used to demonstrate and increase the reliability of the code
generation process.

2 Challenges

Building reliable software is a challenging task in itself, but there are several challenges
specifically related to certification, e.g.,

– maintaining high reliability, especially when a combination of diverse development
techniques is used,

1

– minimizing certification efforts, especially for product families and interconnected
systems of systems,

– reducing certification and re-certification times,
– linking between artifacts and certificates, and
– providing useful information (e.g., estimates of certification efforts).

We claim that the solution to these challenges is an intelligent, automated, and highly
customizable software certificate management system integrated into the development
process.

3 Software Certification

Software certification comprises a wide range of formal, semi-formal, and informal
assurance techniques, including formal verification of compliance with explicit safety
policies, system simulation, testing, code reviews and human “sign offs”, and even ref-
erences to supporting literature. Consequently, the certificates can have different types,
and the certification process requires different mechanisms. A SCMS must be able to
support such different certificate types and certification mechanisms. In order to guar-
antee separation of concerns and thus achieve scalability, certification approaches need
to concentrate on individual risk factors one at a time. Consequently, a SCMS must be
able to combine different certificates for the same artifact to construct an overarching
certificate and, ultimately, to provide a higher degree of confidence.

Certificates A certificate contains all information necessary for an independent assess-
ment of the properties claimed for an artifact. Obviously, the exact nature of the cer-
tificates depends on the nature of the artifact, the property, and the claim. However, a
SCMS needs a unified view of certificates. At its most abstract, a certificate thus has
to represent the three entities involved in the certification process, (i) the artifact being
certified, (ii) the property being asserted, and (iii) the certification authority.

Certifiable Artifacts Certifiable artifacts include not only the conventional software
artifacts (e.g., product families, completed systems, individual components, or even
code fragments) but also supporting non-software artifacts: requirements documents,
system designs, component specifications, test plans, individual test cases, scientific
and engineering data sets, and others.

In particular, the supporting evidence for one certificate can be considered as the
artifact of another certificate. For example, if the correctness of a component is to be
certified using traditional black-box testing, the test harness and the test scripts are
supporting evidence for the certificate; at the same time, the test harness can itself be
certified, e.g., by a code review, and is thus the artifact of another certificate.

Certificate Hierarchies As indicated in the example above, the certificates for an ar-
tifact are not an unstructured collection but exhibit some hierarchical structure. This
structure is determined by two independent dimensions, (i) the system structure, and
(ii) the certificate types.

The internal structure of a system is reflected in the certificate hierarchy. If a system
is decomposed into a number of subsystems, and each subsystem is built from a number
of components, then a certificate for the system depends directly on the certificates of

2

the subsystems and indirectly on the certificates of all involved components. A SCMS
must be able to represent this structure, taking into account language-specific visibility
rules like module and subsystem boundaries that can limit the propagation of changes.

The second dimension is given by the certificates themselves, or more precisely,
by the certificate types. The validity of a certificate can also depend on certificates for
the supporting evidence (as described above), or even the authority, e.g., when a code
review can only be signed by a certified software engineer. This part of the certificate hi-
erarchy reflects the internal structure and procedures of the organization developing the
software. A SCMS can then use the certificate hierarchy for auditing and incremental
re-certification, similar to the way the Unix make-tool uses explicit dependencies and
rules for incremental re-compilation. The SCMS can determine which certificates need
to be inspected, recomputed, or revalidated after an artifact or a certificate has been (or
would be) modified.

Certifiable Properties and Certification Authorities Traditional V&V has only ad-
dressed a restricted range of formal properties. Realistically, however, software devel-
opment requires a wide range of notions of software reliability, safety, and validity,
each with an appropriate certification authority. This must all be supported by a cus-
tomizable SCMS. Examples include coding standards, test cases, statistical validity for
data sets, simulation on high-fidelity test beds, fault tree analysis (FTA), failure modes
and effects analysis (FMEA), stress tests, interoperability, usability, compatibility, and
feasibility studies, as well as formally specified logical safety properties.

Release Policies In the context of certification, a release refers to the transition of an
artifact into a new defined state: for example, launch, system integration test, alpha and
beta testing phases, spiral anchor-point milestones, or code inspection. A release policy
formally describes under which conditions an artifact is deemed to be in an adequately
certified state and can thus be released safely to another state. Different release policies
can be formulated to describe the different types of releases, and the corresponding
certification requirements.

4 Certification Services

Intuitively, a SCMS combines the functionalities of a database (e.g., storing and re-
trieving certificates) and a make-tool (e.g., incremental re-certification). Specifically, it
provides a variety of different services.

Certificate construction The main task of the SCMS is the construction of certifi-
cates. Given an artifact, a claimed property, and a certification authority, the SCMS will
attempt to construct the certificate, invoking automatic mechanisms and notifying indi-
viduals of pending tasks, as appropriate. It should estimate the time and effort that the
certification will take.

Editing and revoking Users can deem an individual certification authority to no longer
be valid (e.g., a bug is discovered in a test harness, or an employee’s badge has expired).
The SCMS should revoke all certificates which depend on this.

Certificate maintenance The SCMS will carry out intelligent re-certification when
a (customizably) appropriate change has taken place in the code or, more generally,

3

software artifacts to be certified. Existing (sub-) certificates should be reused where
possible, especially where product families are concerned.

Auditing Since the SCMS provides a complete certification history with full informa-
tion about all procedures followed, comprehensive audits can be carried out, applying
alternative tools and/or oversight to any elements. The audit itself can then be recorded
in the certification database.

Schema management Clearly, the SCMS must be generic. It must be customizable
to existing procedures. It can be thought of as having a client-server architecture. The
SCMS is the client and allows users to “plug and play” with arbitrary certificate servers.

5 Current Technology and Advances Required

In terms of computing infrastructure, the notions of certificate and certification are usu-
ally used in the context of security mechanisms for computer systems, in particular for
computer networks and network-based services.

A SCMS can build on an existing secure infrastructure, e.g., PKI, for distribution,
authentication, tamper-proof access control, persistence, and other desirable properties.
However, there are a number of differences from existing technology where advances
are required:

– linking to (and deep into) software artifacts,
– the wide diversity of forms of certification, both formal and informal, and
– the need for customizability and extensibility.

The SCMS should be an integral part of a development tool suite and use the same
underlying datastructures, e.g., development graphs [1]. It can be linked to other tools,
e.g., code generators and software reliability estimators. In particular, software certifi-
cation can be combined with automated design documentation, so that the SCMS can
provide an integrated exploration tool for code, certificates, and documentation, similar
to safety cases [5] but more specific to the code level. Likewise, model-based software
development tools should allow the definition of arbitrary domain-specific certificate
types with respect to explicit domain models.

6 Certification of Automatically Generated Code

We are currently investigating some of these ideas in the context of an ongoing project
on automated code generation. We have developed an approach to safety verification
[3] in which the code generator is extended to enable Hoare-style safety proofs for each
individual generated program. The key idea is to generate logical annotations along with
the code, so that the proofs can be automated. These proofs ensure that the generated
code does not violate certain conditions during its execution. However, it has gradually
become clear that since this process produces a large number of auxiliary artifacts, and
involves many components of varying complexity and reliability, that additional tool
support should enable users to browse the entire set of safety artifacts.

4

In [4], we describe a rudimentary certification browser, which provides linking
between the generated program, its verification conditions, the generated axioms, the
proofs, and the proof checks. This is a first step towards an interactive tool which would,
for example, allow designated users to sign off on otherwise unverified lines of code.
This would be a prototype SCMS for code generation. Similar ideas have been investi-
gated by the Programatica project [6], though not in connection with code generation.

In recent work we have developed an approach to inferring annotations for code
produced by third-party code generators. This suggests a means of certifying the code
produced by COTS code generators, and circumvents the difficulties that stem from
treating these tools as black boxes.

7 Conclusions

Incremental certification and re-certification of code as it is developed and modified is
a prerequisite for applying modern, evolutionary development processes, which are es-
pecially relevant for NASA. For example, the Columbia Accident Investigation Board
(CAIB) report [2] concluded there is “the need for improved and uniform statistical
sampling, audit, and certification processes”. Also, re-certification time has been a lim-
iting factor in making changes to Space Shuttle code close to launch time. This is likely
to be an even bigger problem with the rapid turnaround required in developing NASA’s
replacement for the Space Shuttle, the Crew Exploration Vehicle (CEV). Hence, in-
telligent development processes are needed which place certification at the center of
development. If certification tools provide useful information, such as estimated time
and effort, they are more likely to be adopted. The ultimate impact of such a tool will
be reduced effort and increased reliability.

References

[1] S. Autexier, D. Hutter, T. Mossakowski, and A. Schairer. The Development Graph Manager
MAYA (System Description). In Proc. 9th International Conference on Algebraic Method-
ology And Software Technology (AMAST’02). LNCS 2422, pp. 495–501, 2002.

[2] Columbia Accident Investigation Board Report, Volume 1. http://caib.nasa.gov/.
2003.

[3] E. Denney and B. Fischer. Formal Safety Certification of Aerospace Software. In Proc.
Infotech@Aerospace. AIAA, 2005. Invited talk.

[4] E. Denney and B. Fischer. A Program Certification Assistant Based on Fully Automated
Theorem Provers. In Proc. International Workshop on User Interfaces for Theorem Provers,
(UITP’05), 2005.

[5] T. Kelly and R. Weaver. The Goal Structuring Notation – a Safety Argument Notation. In
Proc. DSN Workshop on Assurance Cases: Best Practices, Possible Obstacles, and Future
Opportunities, 2004.

[6] Programatica Project. www.cse.ogi.edu/PacSoft/projects/programatica.
2004.

5

6

Evidence Management in Programatica

Mark P. Jones

1 OGI School of Science & Engineering at OHSU
2 Portland State University

This paper summarizes our efforts in the Programatica project at OGI and PSU
to design new kinds of tools to support the development and certification of
software systems. Our approach relies on a tight integration of program source
code, embedded formal properties, and associated evidence of validity. A partic-
ular goal for the toolset is to facilitate efficient and effective use of many different
kinds of evidence during project development. Our current prototype targets val-
idation of functional (security) properties of programs written in Haskell. This
tool provides connections, through a language of formal properties called P-logic,
to several external validation tools and supports unit testing, random testing,
automated and interactive theorem proving, and signed assertions. The underly-
ing concepts, however, are quite general and should be easily adaptable to other
programming languages and development tools, and to support a wide range of
both process- and artifact-oriented based validation techniques.

1 Software Development and Evidence Management

Software developers rely on a wide variety of techniques to assure themselves
(and their customers) that the system they are building will function correctly:

– In the early stages of a project, experiments, models, and prototypes can be
used to gain a better understanding of system requirements, and unit tests
or specific test data sets may be collected to document expected behavior.

– Developers might also use tools based on static analysis or formal methods—
such as model checkers or theorem provers—to obtain evidence for key prop-
erties. Tools like these can provide strong guarantees about program behav-
ior that are particularly important in safety or security critical applications
where high levels of assurance are required. However, effective use of such
tools can require significant investment in both initial training and daily use,
and hence they are often considered too expensive to be used in the early,
more fluid stages of project development.

– Process-oriented techniques—including, for example, code inspection and de-
sign review—are an important component of current certification method-
ologies and can often be used at multiple stages of the development process.

There are of course, many other techniques that could be listed with the above
examples, some of which are quite general while others are applicable only in
specific domains. But although there are many different techniques, there is still
one important common feature: each of them results in some tangible form of
evidence about specific properties of the software system. For example, an input

7

and (expected) output pair can be used to document a test case; a script or tactic
can be used to record the structure of a formal proof; and detailed minutes can
be used to capture the results of a code review meeting.

Some of the biggest challenges for anyone tasked with certifying the behavior
or properties of a software system are in managing, maintaining, and exploiting
the large and diverse volumes of evidence that are created during its develop-
ment. This observation motivates the development of new tools and techniques
that will allow evidence to be reused, repeated, or replayed so that validity of
each component in a system can be monitored automatically and incrementally
without the need to reconstruct evidence from scratch at every step, or when
the development is complete.

2 The Programatica Approach to Evidence Management

Our specific goals in the Programatica project are to build tools that allow users:
to capture evidence and collate it with source materials; to exploit dependencies
between evidence and the programs to which it refers as a means of tracking
change; to automate the process of combining and reusing evidence; and, finally,
to understand, manage, and guide further development and validation efforts. In
addition, we recognize that evidence may come in many different forms, and that
tools must be designed to address this: a key feature of our approach is the use of
a general certificate abstraction for encapsulating, accessing, and manipulating
different forms of evidence in a uniform manner.

Our approach is intended to be quite general, but it is inspired, in part, by
techniques adopted in more specialized tools. The practice of “Extreme Pro-
gramming” [2], for example, encourages frequent use of testing as an integral
part of coding and refactoring [4] and has stimulated the development of tools
that automate the testing process. These tools, however, do not attempt to deal
with or incorporate other kinds of evidence. Similarly, compilation tools (such
as make [3]) track dependencies between source code units to minimize the need
for recompilation, but they do not attempt to capture other kinds of dependen-
cies or evidence. As a final example, some systems support “external oracles”
that allow users to integrate theorem proving with other validation tools such as
BDDs [5] or model checking [1]. These tools, however, focus on formal validation
and do not directly address evidence capture and management.

2.1 Certificates

Programatica certificates are a mechanism for encapsulating different types of
evidence. The evidence itself, as well as the internal format by which it is rep-
resented, will vary from one certificate to the next. But, from the perspective of
an evidence management tool, every certificate offers the same basic interface,
with attributes that describe its sequent and validity, and operations that allow
certificates to be validated and edited. Each of these features is described below:

8

– The sequent of a certificate formalizes the claim that the accompanying evi-
dence is intended to support. Sequents provide the means by which disparate
kinds of evidence can be brought together in a single environment. In our
current system, we write sequents as judgments, Γ ` Γ ′, where the hypothe-
ses in Γ and the conclusions in Γ ′ are lists of formulas over a suitably chosen
specification logic. The formulas in a sequent may include direct references
to variables and functions that are defined in the source text. As such, a
sequent also provides a starting point for tracking dependencies between
certificates and the underlying code base.

– A certificate is valid if its sequent is consistent with the evidence it contains.
For example, a certificate with sequent ` A is valid only if it provides evi-
dence for A. In this way, validity serves as a contract between external tools
and the evidence management system.

– The actions needed to validate a given certificate will depend on the type of
the certificate, and may, in some cases, involve significant computation. To
permit a quick test of validity, each certificate includes a flag that is set only
when the certificate is known to be valid. If either the certificate itself or a
part of the source text that it depends on is changed, then the flag will be
reset and the full test of validity can be deferred until needed.

– The actions needed to edit a certificate—such as modifying it so that its
validity can be established—will also depend on the type of the certificate,
and may, in some cases require significant user interaction.

The Programatica certificate abstraction supports compositional certification.
For example, from a certificate with sequent A ` B and another with sequent
B ` C, we can derive a compound certificate with sequent A ` C. If changes to
the underlying program invalidate only one of the original certificates, then we
will not need to construct new evidence for the other one or for the composite.
Note also that the original two certificates could be constructed using different
tools; the composite can then be tagged to reflect the set of tools that were used in
its construction, and this information can be used as an indication of its pedigree.
In this way, certificates and sequents provide a mechanism for integrating and
reasoning with different kinds of evidence.

2.2 Certificate Servers

Certificate servers (or just ‘servers’) play an important role as a mechanism for
creating and using different types of certificate in a uniform manner. We distin-
guish between: external servers, which are used for certificates whose evidence
is supplied by external tools; and internal servers, which use functionality that
is built in to the evidence management tool, and provide a means for combining
different types of evidence.

– External servers connect the evidence management system to the external
tools that are used to construct and maintain evidence. As such, external
servers can be understood as software plug-ins that must be installed be-
fore certificates of a particular type can be edited and validated. External

9

servers are responsible for translating between the languages used in source
documents and sequents and the languages used by external tools. It is the
responsibility of each external server to detect and report cases where trans-
lation is not possible. A second responsibility of an external server is to
capture and package context from source documents so that it can be used
by the external tool. We refer to this as ‘theory formation’ because it cor-
responds to assembling a theory that includes the facts and definitions that
would be needed to prove a particular theorem.

– Internal servers provide built-in functionality for generating and combining
evidence. This includes ‘axiom’ servers that can generate and validate cer-
tificates for sequents of a particular form and ‘rule’ servers that can be used
to combine previously constructed certificates.

Servers provide an infrastructure for theorem proving with certificates in which
different servers correspond to different external oracles and inference rules. One
of the most tricky design choices here is to determine how much of this machinery
should be built in to the evidence management tools, and how much should be
delegated to an external theorem prover.

3 Challenges for Future Work

The Programatica approach to evidence management offers a new vision for high-
assurance software development and certification. Our current prototypes [6] are
in an early stage of development but are designed to extend current evaluation
methodologies by supporting and integrating the different kinds of evidence that
they require. We hope that Programatica will also provide an evolution path for
introducing and applying formal methods to document and validate essential
functional properties of critical software systems at high assurance levels.

There are, however, many challenges to address and evaluate with future
generations of the Programatica tools, including:

– What can a tool do to help users visualize and understand the evidence they
have assembled, to prioritize future validation tasks, and to identify areas in
which evidence is either lacking or weak?

– How can we deal with differing levels of trust and confidence in the different
kinds of evidence, servers, and models that are used?

Certainly, some aspects of confidence and trust can be quantified. For example,
if one test suite includes all of the tests from another, then the first should offer
at least the same degree of assurance as the second. But many other aspects are
subjective and will require a flexible tool that can be tailored to policies of an
organization or to the requirements of a particular certification process.

Acknowledgments

The work described in this paper has benefited significantly from the input
of Programatica team members including Thomas Hallgren, James Hook, Dick
Kieburtz, Rebekah Leslie, Andrew Tolmach, and Peter White.

10

References

1. Mark D. Aagaard, Robert B. Jones, and Carl-Johan H. Seger. Lifted-FL: A prag-
matic implementation of combined model checking and theorem proving. In Theo-
rem Proving in Higher Order Logics (TPHOLs), July 1999.

2. Kent Beck. Extreme Programming Explained: Embrace Change. Addison-Wesley,
1999.

3. S.I. Feldman. Make-A program for maintaining computer programs. Software—
Practice and Experience, 9(4), 1979.

4. Martin Fowler et al. Refactoring : Improving the Design of Existing Code. Addison-
Wesley, 1999.

5. Michael J.C. Gordon. Reachability programming in HOL98 using BDDs. In Theorem
Proving in Higher Order Logics (TPHOLs), August 2000.

6. The Programatica Team. Programatica tools for certifiable, auditable development
of high-assurance systems in haskell. In High Confidence Software and Systems,
Baltimore, MD, 2003.

11

12

Position Paper Draft http://ti.arc.nasa.gov/sc05/
20th IEEE/ACM International Conference on Automated Software Engineering
Software Certificate Management Workshop, SoftCeMent05
November 8, 2005
Long Beach, California, USA

Qualification of Software Development Tools
for Airborne Systems Certification

Andrew J. Kornecki,

Embry Riddle Aeronautical University, Daytona Beach, FL
Janusz Zalewski

Florida Gulf Coast University, Fort Myers, FL

Introduction - Design Tools Categorization

This position paper is a result of recent research contracted by the Federal Aviation
Administration. The main objective of this research was to identify the assessment
criteria that allow both developers and certifying authorities to evaluate specific safety
critical real-time software development tools from the system/software safety
perspective. Related objectives were: to present and evaluate the state of the art in safety
critical software development tools and to establish a basis for software development tool
qualification guidelines. The research included literature reviews and industry surveys,
creation of tool evaluation taxonomy, installation of and experiments with the selected
tools and collecting and analyzing data. The focus of this research was on real-time
design tools with automatic code generation features.

During the design of a real-time system, it is important to be aware that there exist two
distinct classes of modern systems exposed to environmental stimuli:
o Interactive – the computer system determines the pace of operation by granting or

allocating resources to clients on request when feasible (operating systems, data
bases); the concerns are deadlock avoidance, fairness, data coherence.

o Reactive – the system environment determines the pace of operation while the
computer system reacts to external stimuli producing outputs in timely way (process
control, avionics, signal processing); the concerns are correctness and timeliness.

13

Consequently, design tools that assist developers in translating the requirements into
source code can be categorized into two groups, selected for this study:
o function-based, block-oriented, reactive, preferred by engineers with system and

control background, and
o structure-based, object-oriented, interactive, preferred by engineers with software and

computer background.

Current Practice of Development Tools Qualification

The existing software aspects of airborne systems certification guidelines defined by the
FAA through Advisory Circular 20-115B [1] and DO-178B [2] define software
development tools as: “Tools whose output is part of airborne software and thus can
introduce errors”. As elaborated in DO-178B and related documents [3,4], qualification
is a supplementary process the applicant may elect to follow in a course of certification
for the airborne system. Tool qualification is attempted only as an integral component of
a specific certification program, i.e., part of a Type Certificate (TC), Supplemental Type
Certificate (STC), or Technical Standard Order (TSO) approval. The tool data are
referenced within the Plan for Software Aspects of Certification (PSAC) and Software
Accomplishment Summary (SAS) documents for the original certification project. The
applicant should present for review the Tool Operational Requirements (TOR) – a
document describing tool functionality, environment, installation, operation manual,
development process, expected responses (also in abnormal conditions). Two other
documents must be submitted: Tool Qualification Plan and Tool Accomplishment
Summary. To make an argument for qualification, the applicant must demonstrate that
the tool complies with its TOR. This demonstration may involve a trial period during
which a verification of the tool output is performed and tool-related problems are
analyzed, recorded and corrected. The document states also that software development
tools should be verified to check the correctness, consistency, and completeness of the
TOR and to verify the tool against those requirements. More data is required for the
qualification of a development tool, including Tool Configuration Management Index,
Tool Accomplishment Summary, Tool Development Data, Tool Verification Data, Tool
Quality Assurance Records, Tool Configuration Management Records, etc. These
requirements are described in chapter 9 of the FAA Order 8110.49 [4].

Currently, there is no central repository that maintains a listing of previously qualified
tools. Only the applicant, who qualified a tool within the scope of a specific project, has

14

or owns the necessary data. The conducted survey identified only a handful of
development tools that have been qualified. In addition, the obtained information is
anecdotal based on personal contacts and word of mouth rather than documented in a way
that could be examined in detail. The only information the research team was able to
obtain were statements to the effect: “Tool X was qualified while used on Level-Y
certified system Z by applicant W”. Occasionally, additional information was conveyed
in a form of brief e-mails discussing the qualification approach or other details. More
often the follow-up was unanswered. Efforts to get an access to specific documentation
were unsuccessful. We may hypothesize that main reasons for that are intellectual
property rights, company policies guarding competitive advantage, and the business red
tape.

One needs to note that modern commercial development tools are typically complex
suites combining multiple functionalities/capabilities. The survey identified a relatively
short list of qualified development tools, or more specifically: selected functionality of
the tool suite. At the time of this writing they included code generators (GALA:
Generation Automatique de Logiciel Avionique, GPU: Graphical Processing Utility,
VAPS CG: Virtual Application Prototyping System Code Generator, SCADE QCG:
Safety Critical Avionic Development Environment Qualifiable Code Generator) and
configuration-scheduling table generators (UTBT: Universal Table Builder Tool, CTGT:
Configuration Table Generation Tool), most of them being in-house products.

Assessment Criteria and Experiments

In order to help in the tool qualification process, we first attempted to identify criteria
(metrics) for tool evaluation, establish their measures, and conduct experiments
validating the approach. Of the multiple criteria that have been used for tool evaluation
in the past, we selected the following four [5], listed here with their measures:

- Usability measured as development effort (in hours)
- Functionality measured via the questionnaire (on a 0-5 points scale)
- Efficiency measured as code size (in LOC)
- Traceability measured by manual tracking (in number of defects).

This selection was based on the analysis of documentation from the FAA, ISO/IEC
standards, industry survey, and studies done by the British Computer Society and
Technical Center of Finland.

15

The experiments that followed were conducted on a generic avionics system test-bed
equipped with a flight simulator, with real industry-strength software design tools [5].
Data were collected in four phases of the design process including:

(1) Project preparation
(2) Model creation and code generation
(3) Actual measurement
(4) Postmortem.

The recently published results [6] confirm that this approach can be effectively used to
distinguish between tools within the group of established criteria.

Selected Additional Observations

o Despite their diversity, complex design tools with analysis and code generation

capability dominate software tools market. Software for civil aviation systems is risk
averse and provides a low quantity market not having enough commercial clout to
drive the software tool market. On the other hand, use of tool on specific safety-
critical project is a good public relation opportunity for tool vendor, which may result
in increase of sales in less-regulated industries.

o Modern complex multifunctional tools require a steep learning curve. Considering
tool complexity, the quality of support materials is often marginal. Unless developers
become expertly proficient with the tool, reliance on it may lead to ignorance of tool
functionality and complacency.

o The notation used by specific tool constraints the design options, thus restricting
design flexibility. The tools may exhibit behavioral discrepancy due to the
underlining runtime model.

o No mechanism exists to promulgate information about tool qualification. The
qualification data constitute component of the certification package and are highly
proprietary.

o It is imperative that the objectives for development tool qualification reflect the fact
that the modern tools operate in an environment different than the target system. The
typical operating environment for a tool is a general-purpose COTS workstation
under conventional operating system. The critical issue for the tools is the integrity of
the data as opposed to the tool operation in terms of timing, memory use, etc.

o Service history provides a means for claiming partial certification credits for target
software. It does not help greatly to provide means for the development tools
qualification, due to rapid progress of software technology. Typically, by the time

16

enough data is collected to create appropriate service history, the tool has been
updated or modified in some way. Thus, in general, there is not enough time to get
service history data for a development tool.

Conclusion

The experiments and observations indicate that the industry might benefit from methods
to qualify a tool that are independent of a specific program and the applications using it.
This would require updating the guidelines to consider that the tools operate in ground-
based COTS environment different from the target application. This would also require
considering a model-based development paradigm, re-defining the qualification process
and allowing flexibility regarding qualification that is less dependent on the application
program using the tool. A service history approach, considering incremental tool changes,
may be also needed. A more streamlined method to qualify development tools and to
keep them current as technology advances would be also useful. The streamlining must,
however, not compromise safety.

References

[1] U.S. Dept. of Transportation, Federal Aviation Administration, Advisory Circular AC

20-115B, November 1993
[2] Radio Technical Commission for Aeronautics, Software Considerations in Airborne

Systems and Equipment Certification, RTCA DO-178B, RTCA SC-167, 1992
[3] Radio Technical Commission for Aeronautics, Final Report for Clarification of DO-

178B ‘Software Considerations in Airborne Systems and Equipment Certification’,
RTCA DO-248B, RTCA SC-190, 2001

[4] U.S. Department of Transportation, Federal Aviation Administration, Software
Approval Guidelines, FAA Order 8110.49, (Chapter 9 replaces FAA Notice N8110.91
of 2001), FAA, 2003

[5] Kornecki A., Zalewski J., Process Based Experiment for Design Tool Assessment in
Real-Time Safety-Critical Software Development, Proc. SEW-29, Annual 29th
NASA/IEEE Software Engineering Workshop, Greenbelt, MD, April 6-7, 2005

[6] Kornecki A., J. Zalewski, Experimental Evaluation of Software development Tools for
Safety-Critical Real-Time Systems, Innovations in Systems and Sofware Engineering
– A NASA Journal, Vol. 1, No. 2, October 2005

17

18

A Method for Verification and Validation Certificate
Management in Eclipse

Mark Sherriff
North Carolina State University

Raleigh, NC, USA 27695
+1-919-513-5082

mark.sherriff@ncsu.edu

Laurie Williams
North Carolina State University

Raleigh, NC, USA 27695
+1-919-513-4151

williams@csc.ncsu.edu

ABSTRACT
During the course of software development, developers will
employ several different verification and validation (V&V)
practices with their software, but these efforts might not be
recorded or maintained in an effective manner. Our research
objective is to build a method which allows developers to track
and maintain a persistent record of the V&V practices used during
development and testing. The persistent record of the V&V
practices are recorded as certificates which are automatically
stored and maintained with the code and creates traceability from
the V&V practices to the code We have created a system that aids
developers in the management of certificates in the Eclipse
development environment. Also, we are researching a method to
utilize a parametric model in conjunction with this V&V
information to estimate the defect density of that program.

Categories and Subject Descriptors
D.2.8 [Software Engineering]: Metrics - Performance measures,
Process metrics, Product metrics.

General Terms
Measurement, Design, Reliability

Keywords
Software Reliability Engineering, Reliability Estimation,
Validation and Verification Management

1. INTRODUCTION
During software development, a development team will use
several different methods to ensure that a system is of high-
assurance [14]. However, the verification and validation (V&V)
practices used to make a system reliable might not always be
documented effectively or this documentation may not be
maintained properly. This lack of proper documentation can
hinder other developers from knowing what V&V practices have
been performed on a given section of code. Further, if code is
being reused from an earlier project or code base, developers
might spend extra time re-verifying a section of code that has
already been verified thoroughly.

One way to improve the documentation and management of V&V
efforts is through the creation of certificates associated with the
code base. Certificates are a record of a V&V practice employed
by developers and can be used to support traceability between
code and the evidence of the V&V technique used. These
certificates can be automatically created, maintained, and verified
by software tools, which allows developers to utilize them without
excessive overhead.

Our research objective is to build a method which allows
developers to track and maintain a certificate-based persistent
record of the V&V practices used during development and testing.
Further, we will build a parametric model which utilizes these

certificates to provide an estimate the defect density of a program.
To accomplish this objective, we are developing and automating a
method called Defect Estimation with V&V Certificates on
Programming (DevCOP). This method includes: (1) a mechanism
for creating a persistent record of V&V practices as certificates
stored with the code base; (2) tool support to make this method
accessible for developers; and (3) a parametric model to provide
an estimate of defect density.

We are currently developing a plugin for the Eclipse1 integrated
development environment (IDE) to support certificate
management. The DevCOP Eclipse plugin allows developers to
create, manage, and store certificates with the code base itself.
We are also developing the DevCOP parametric model to provide
an estimate of defect density using a nine-step systematic
methodology for building software engineering parametric models
based on work developed at the Center for Software Engineering
at the University of Southern California [2, 11]. Research has
shown that parametric models [5] using software metrics, such as
the Software Testing and Reliability Early Warning (STREW) [8,
12] suite, can be an effective means to predict product quality.
Due to the increasing cost of correcting defects during the
software development lifecycle, developers can benefit from early
information regarding the defect density of their product.

In this paper, we describe our current work in developing and
validating the DevCOP parametric model and the DevCOP
Eclipse plugin to support the creation and maintenance of
DevCOP certificates.

2. BACKGROUND
In this section, we will discuss the relevant background work and
methodologies used during our research, including metric-based
defect density estimation; V&V techniques; and parametric
modeling in software engineering.

2.1 Parametric Modeling
Parametric models relate dependent variables to one or more
independent variables based on statistical relationships to provide
an estimate of the dependent variable with regards to previous
data [5]. The general purpose of creating a parametric model in
software engineering is to help provide an estimated answer to a
software development question early in the process so that
development efforts can be directed accordingly. The software
development question could relate to what the costs are in creating
a piece of software, how reliable a system will be, or any number
of other topics.

Parametric modeling has been recognized by industry and
government as an effective means to provide an estimate for
project cost and software reliability. The US Department of

1 For more information, go to http://www.eclipse.org/.

19

Defense, along with the International Society of Parametric
Analysts, acknowledges the benefit of using parametric analysis,
and encourages their use when creating proposals for the
government [5]. The Department of Defense claims that
parametric modeling has reduced government costs and also
improved proposal evaluation time [5].

Boehm developed the Constructive Cost Model (COCOMO) [3]
to estimate project cost, resources, and schedule. Further, the
Constructive Quality Model (COQUALMO) added defect
introduction and defect removal parameters to the COCOMO to
help predict potential defect density in a system. Nagappan [8]
created a parametric model with his Software Testing Reliability
Early Warning (STREW) metric suite to create an estimate of
failure density based on a set of software testing metrics. In our
research, we will also build a parametric model to estimate defect
density based upon V&V certificates recorded with the code.

2.2 Verification and Validation Techniques
During the creation of software, a development team can employ
various V&V practices to improve the quality of the software [1].
For example, different forms of software testing could be used to
validate and verify various parts of a system under development.
Sections of code can be written such that they can be
automatically proven correct via an external theorem prover [14].
A section of a program that can be logically or mathematically
proven correct could be considered more reliable than a section
that has “just” been tested for correctness.

Other V&V practices and techniques require more manual
intervention and facilitation. For instance, formal code
inspections [4] are often used by development teams to evaluate,
review, and confirm that a section of code has been written
properly and works correctly. Pair programmers [15] benefit from
having another person review the code as it is written. Some code
might also be based on technical documentation or algorithms that
have been previously published, such as white papers, algorithms,
or departmental technical reports. These manual practices, while
they might not be as reliable as more automatic practices due to
the higher likelihood of human error, still provide valuable input
on the reliability of a system.

The extent of V&V practices used in a development effort can
provide information about the estimated defect density of the
software prior to product release. The Programatica team at the
Oregon Graduate Institute at the Oregon Health and Science
University (OGI/OHSU) is working on a method for high-
assurance software development [14]. Programmers can create
different types of certificates on sections of code based on the
V&V technique used by the development on that section of the
code. Certificates are used to track and maintain the relationship
between code and the evidence of the V&V technique used.
Currently, the three types of V&V techniques that Programatica
can create certificates for include expert opinion, unit testing, and
formal proof. These certificates are used as evidence that V&V
techniques were used to make a high-assurance system [14]. We
propose an extension of OGI/OHSU’s certificates for defect
density estimation whereby the estimate is based upon the
effectiveness of the V&V practice for identifying defects (or lack
thereof) used in code modules.

2.3 Metrics to Predict Defect Density
Operational profiles have been shown to be effective tools to
guide testing and help ensure that a system is reliable [6]. An
operational profile is “the set of operations [available in a system]
and their probabilities of occurrence” as used by a customer in the

normal use of the system [7]. However, operational profiles are
perceived to add overhead to the software development process as
the development team must define and maintain the set of
operations and their probabilities of occurrence. Rivers and Vouk
recognized that operational profile testing is not always performed
when modern constraints on market and cost-driven constraints
are introduced [9]. They performed research on evaluating non-
operational testing and found that there is a positive correlation
between field quality and testing efficiency. Testing efficiency
describes the potential for a given test case to find faults at a given
point during testing. Our research uses non-operational methods
to avoid excessive overhead, while still providing valuable
information.

Nagappan [8] performed research on estimating failure density
without operational profiles by calibrating a parametric model
which uses in-process, static unit test metrics. This estimation
provides early feedback to developers so that they can increase the
testing effort, if necessary, to provide added confidence in the
software. The STREW metric suite consists of static measures of
the automated unit test suite and of some structural aspects of the
implementation code. Case studies [8] indicate that the STREW-J
metrics can provide a means for estimating software reliability
when testing reveals no failures. Another version of the STREW
metric suite was developed specifically for the Haskell
programming language, STREW-H [12, 13]. STREW-H was
similarly built and verified using case studies from open-source
and industry. These findings also showed that in-process metrics
can be used as an early indicator of software defect density for
Haskell programs. In our research, we use a similar approach to
predict defect density, taking software metrics and using a
parametric model to provide early defect feedback to developers

3. THE DevCOP ECLIPSE PLUGIN
We have created a DevCOP Eclipse plugin to handle the creation
and management of V&V certificates during the development
process2 [10, 13]. The main purpose of the plugin is to automate
the DevCOP method with little additional overhead for
developers. The plugin allows developers to create and store
certificates during the development process within the IDE so that
this information can be utilized throughout the code’s lifetime for
defect density estimation purposes, for maintenance purposes, for
analysis of the effectiveness of certain V&V practices, or for
future reference in reused code. Figure 1 shows a screenshot of
the Eclipse plugin for recording V&V certificates.

The current version of the plugin, Version 1.1.1, focuses on
recording certificates that normally do not produce artifacts that
are stored with the code. In other words, the plugin will aid
developers by recording information about manually-performed
V&V, not automatic or programmatic V&V, such as unit testing.
Programmers can select one or more functions for certification
through the Eclipse Package Explorer. They select the type of
certificate (i.e. Code Inspection, Pair Programming, Bug Fix) and
the relative importance of the certificate as the weight coefficient
associated with it. The certificate information is then stored in an
XML document that is saved in the project’s workspace. The
Eclipse plugin reads and writes to these XML documents as
certificates are created and edited.

The example certificate shows the information that is recorded
about the V&V technique and the function on which the technique
was used. Basic identifying information, such as the name of the

2 The plugin is available at http://agile.csc.ncsu.edu/mssherri/devcop/.

20

function and its location along with creation information, are all
included. At the time of creation, the certificate stores a hash of
the source code with the certificate. The plugin determines
whether a certificate is valid or not by comparing a stored hash of
the source code at the time of certification with that of the current
source code. If a change is made to a function’s code, the source
hash stored with the certificate no longer matches that of the
function’s source code, and the certificate is invalidated.

Our objective is to make the certificate creation process as easy
and transparent as possible, and will continue to improve it in later
iterations as we receive more developer feedback. The primary
method in which we accomplish this method of certificate
creation is through what we call Active Certificates. An Active
Certificate is a means by which Eclipse will automatically
identify changed code during a programming session to be
certified by the developer.

For example, if two programmers were about to start pair
programming on a piece of code, they would click the Active
Certificate button before they began. Eclipse would then actively
record non-trivial changes to the system (i.e. changes to the
abstract syntax tree of the code, not commenting or formatting
changes) and will present the affected functions to the developers
for certification at the end of the pair programming session. The
concept of Active Certificates can extend to several different
types of V&V activity, such as code inspections or bug fixes.
Active Certificates allow developers to write or modify code
normally, without increasing their work overhead.

Current improvements are being made to the plugin based on
feedback from development teams. Suggestions such as
integrating the DevCOP plugin with the refactoring mechanism in
Eclipse or with the source control system itself are being
considered. The automatic creation of other types of certificates
is another feature under development. Certificates will be

dynamically created from automated testing suites or other similar
methods of V&V. We are also adding reporting functionality to
the plugin to provide developers tools for evaluating their overall
V&V effort, including identifying sections that might not have
been covered by any V&V techniques as of yet.

4. THE DevCOP PARAMETRIC MODEL
A V&V certificate in DevCOP contains information on the V&V
technique that was used to establish the certificate and is
associated with a specific function in a piece of code. Different
V&V techniques will provide a different level of assurance as to
how reliable a section of code is. For example, a desk check of
code would be, in general, less effective than a formal proof of the
same code.

We are developing a parametric model which uses non-
operational metrics to estimate defect density based upon records
of which V&V practices were performed on sections of code
during development [10]. We also wish to integrate our
estimation directly into the development cycle so that developers
may take corrective measures earlier in the development lifecycle.

We envision the defect density parametric model to take the form
of Equation 1. For each certificate type, we would sum the
product of a size measure (perhaps lines of code or number of
functions/methods) and a coefficient produced via regression
analysis of historical data. The calibration step of the regression
analysis would yield the constant factor (a) and a coefficient
weighting (cj) for each certificate type, indicating the importance
of a given V&V technique to an organization’s development
process.

)*(
_

1
�

=

+=
typeecertificat

j
jj SizecaDensityDefect (1)

Figure 1. Screenshot of the DevCOP Eclipse plugin for recording V&V certificates.

21

To build and verify our parametric model of our DevCOP method,
we are utilizing the nine-step modeling methodology [11]:

1. Determine model needs;
2. Analyze existing literature;
3. Perform behavioral analysis;
4. Define relative significance;
5. Gather expert opinion;
6. Formulate a priori model;
7. Gather and analyze project data;
8. Calibrate a posteriori model; and
9. Gather more data; refine model.

The goal of the model is to provide an estimate of defect density
based on V&V certificates and the coverage of each certificate
type. We anticipate that a model would need to be developed for
each programming language we would study. Our current work
involves the Java (object-oriented) and Haskell (functional)
languages. We are currently investigating how this technique can
be applied to these two different languages.

5. LIMITATIONS
In the creation of certificates, we are not assigning more
importance to certain functions or sections of code over others, as
is done with operational profile means of estimation. Nor are we
using the severity of defects detected to affect the importance of
some certificates over another. While this level of granularity
could be beneficial, one of our initial goals is to make this method
easy to use during development, and at this time, we think that
adding this level of information could be a hindrance. Another
limitation is the granularity of certificates. Based on the
Programatica Team’s work [14] it was decided that methods
would be the proper level of granularity for certificates. The
determination of certificate weights used in the parametric model
is still being researched through empirical studies with industry
projects.

6. CONCLUSIONS AND FUTURE WORK
We have created and are currently validating a method for
managing V&V certificate information. We are also developing a
method for a development team to estimate software defect
density in-process using this V&V information. Due to the high
costs of fixing software defects once a product has reached the
field, information that can be provided to developers in-process
and can give an indication of software defect density is
invaluable. If corrective actions can be taken earlier in the
software development life cycle to isolate and repair software
defects, overall maintenance costs can decrease.

The DevCOP plugin allows developers to easily record their V&V
activities within the development environment without increasing
their overhead greatly due to the inclusion of Active Certificates.
The plugin also provides developers with a mechanism to manage
the effort that is put into V&V in a place where all developers can
see what measures have been taken to ensure a piece of code is
reliable and to treat it accordingly. DevCOP certificate
information can be used to provide a V&V history for particular
code segments. Further, after a set of certificates has been
created, an overall estimate of defect density can be created based
on the V&V weightings using a parametric model. We will
continue our work to improve the plugin based on developer
suggestions and to gather data to validate the DevCOP parametric
model.

7. ACKNOWLEDGEMNETS
We wish to give our sincerest thanks to the Programatica team for
their input on the various parts of this work. This work was
funded by the National Science Foundation.

8. REFERENCES
[1] Balci, O., "Verification, Validation, and Accreditation of

Simulation Models," Winter Simulation Conference, 1997,
pp. 125-141.

[2] Boehm, B. W., "Building Parametric Models," International
Advanced School of Empirical Software Engineering, Rome,
Italy, September 29, 2003.

[3] Boehm, B. W., Horowitz, E., Madachy, R., Reifer, D., Clark,
B., Steece, B., Brown, A. W., Chulani, S., and Abts, C.,
Software Cost Estimation with COCOMO II. Upper Saddle
River, NJ: Prentice Hall, 2000.

[4] Fagan, M., "Design & Code Inspections to Reduce Errors in
Program Development," IBM Systems Journal, vol. 15, no. 3,
pp. 182-211, 1979.

[5] International Society of Parametric Analysts, "Parametric
Estimating Handbook." Available Online. Online
Handbook. http://www.ispa-
cost.org/PEIWeb/Third_edition/newbook.htm.

[6] Musa, J., "Theory of Software Reliability and its
Applications," IEEE Transactions on Software Engineering,
pp. 312-327, 1975.

[7] Musa, J., Software Reliability Engineering: McGraw-Hill,
1998.

[8] Nagappan, N., "A Software Testing and Reliability Early
Warning (STREW) Metric Suite," PhD Dissertation, North
Carolina State University, 2005.

[9] Rivers, A. T., Vouk, M.A., "Resource-Constrained Non-
Operational Testing of Software," International Symposium
on Software Reliability Engineering, Paderborn, Germany,
1998, pp. 154-163.

[10] Sherriff, M., "Using Verification and Validation Certificates
to Estimate Software Defect Density," Doctoral Symposium,
Foundations of Software Engineering, Lisbon, Portugal,
September 6, 2005, 2005.

[11] Sherriff, M., Boehm, B. W., Williams, L., and Nagappan, N.,
"An Empirical Process for Building and Validating Software
Engineering Parametric Models," North Carolina State
Univeristy CSC-TR-2005-45, October 19 2005.

[12] Sherriff, M., Nagappan, N., Williams, L., and Vouk, M. A.,
"Early Estimation of Defect Density Using an In-Process
Haskell Metrics Model," First International Workshop on
Advances in Model-Based Software Testing, St. Louis, MO,
May 15-21, 2005.

[13] Sherriff, M., Williams, L., "Tool Support For Estimating
Software Reliability in Haskell Programs," Student Paper,
IEEE International Symposium on Software Reliability
Engineering, St. Malo, France, 2004, pp. 61-62.

[14] The Programatica Team, "Programatica Tools for Certifiable,
Auditable Development of High-Assurance Systems in
Haskell," High Confidence Software and Systems, Baltimore,
MD, 2003.

[15] Williams, L. and Kessler, R., Pair Programming Illuminated.
Boston: Addison-Wesley, 2002.

22

Certificate Management: A Practitioner’s
Perspective

Mike Whalen, Rockwell-Collins Inc.
mwwhalen@rockwellcollins.com

Standards for critical avionics software development, such as DO178B, place a strong
emphasis on process issues: ensuring traceability between different development artifacts
and proper configuration management of these artifacts. Certification Management
(CM) systems formalize many of the relationships between different artifacts and hold the
promise of both streamlining the management of the artifacts and ensuring that
relationships between the artifacts are formally justified. However, to be useful in an
industrial context, the definition and scope of CM systems must be better understood, and
several open issues must be addressed. This paper describes issues and potential uses of
CM systems in industrial practice.

1. Introduction
Current avionics software standards such as DO178B [6] focus on software development
processes to try to ensure a high level of confidence in the correctness of the developed
software. These process requirements include ensuring traceability between
requirements, design artifacts, source, and object code, and also in maintaining proper
configuration management between artifacts. However, little emphasis is placed on
formal verification of functional behavior of systems.

Recent advances in modeling languages have made it feasible to formally specify and
analyze the behavior of large system components. Synchronous data flow languages,
such as Lustre [1], SCR [2], and RSML-e [3] seem to be particularly well suited to this
task, and commercial tools such as SCADE [4] and Simulink [5] are growing in
popularity among designers of safety critical systems, largely due to their ability to
automatically generate code from models. At the same time, advances in formal analysis
tools have made it practical to formally verify important properties of models to ensure
that design defects are identified and corrected early in the lifecycle (see, for example,
[8], [9], [10]). At Rockwell-Collins we are integrating formal analysis into the design
and development cycle for next-generation commercial avionics systems and expect
formal analysis to be an integral part of the V & V process for future systems.

Software certification management (CM) systems are designed to support independent
verification of some aspect of software development. They introduce the notion of a
software certificate, which contains all the information necessary for an independent
assessment of the demonstrated properties. These certificates could be used to formalize
many of the analyses that are required in guidelines such as DO178B, and also for formal
functional verification of software artifacts, leading to safer systems.

Unfortunately, the current definition of CM systems is diffuse, and it is difficult to
determine the boundaries between CM systems, configuration management systems such

23

as CVS and Rational ClearCase, and requirements traceability systems such as DOORS.
When managing informal artifacts, such as, for example, fault trees, textual requirements,
or design rationales, the benefit of using a CM approach over traditional traceability tools
is unknown. In order to use CM systems in an industrial setting, a more specific
definition of the role and benefit of CM systems is required. This paper present s a few
thoughts on how and where CM systems might be useful in a critical software
development effort, and some future directions for research.

2. CM Opportunities for Showing Safety and
Requirements Traceability in Critical Avionics
Software

Critical software standards such as DO178B [6] require multiple levels and types of
traceability between software artifacts. It distinguishes four abstraction layers of
software artifacts: high-level requirements, low-level requirements, source code, and
object code, and requires that the artifacts in each layer map to artifacts in the preceding
and proceeding layer. The standard approach to satisfying DO178B uses a mixture of
semi-formal analysis (often consisting of human inspections and checklists) and
extensive testing to try to show that software is correctly implemented and corresponds to
its requirements.

DO178B calls out several different kinds of analysis that should be performed on source
code. Some of these analyses are designed to show conformance to higher- level
requirements, while others are “well- formedness” checks to ensure that implementation
does not allow safety or security violations. Many of the well- formedness criteria could
be easily formulated as Proof-Carrying Code (PCC)-style safety policies to be proven of
source or object code. These proofs could then be used as certificates for the system in
question. Some well- formedness properties that are called out in DO178B are:

? unit-of-measurement /dimensional consistency between modules / subsystems

? arithmetic overflow/underflow

? variable initialization-before-use

? behavior of partial arithmetic operators (e.g. divide)

? termination

? deadlock/livelock/race conditions

? array/pointer safety

There are several tools that can automatically check such properties, such as PolySpace
[13], but these currently do not generate evidence suitable for CM systems.

With the recent adoption of model-based development languages such as SCADE [1] and
Simulink [5], it has also become easier to formally analyze functional behavior of
software. These languages have relatively straightforward formal semantics that are
straightforward to translate into model checking languages such as SMV [7]. Rockwell-

24

Collins has had significant success translating informal textual requirements into
properties that can be proven against large software models [10].

In order to perform the proofs, it was necessary to split the software model into several
analysis models and use techniques such as temporal induction [11] to perform assume-
guarantee proofs. These creation of the analysis models and the proof graphs [11] were
performed and justified by hand. In order to perform automated formal analysis of large
systems, these kinds of steps will be necessary, and the hand-justifications are a weak
link in the guarantees provided by the model checking tools. Certificates that ensure that
the different analyses are correctly justified and related would be a significant benefit.

Another issue is that analyses performed by most model checking tools do not yield any
kind of certificate, so cannot be justified. This leads to a situation where a significant
amount of trust must be invested in the model checker. Another avenue for improvement
would be the creation of certificate-generating automated analysis tools.

3. What is a Certificate Management System?
In order to use CM systems in avionics projects, we must better define what they are.
According to the SoftCeMent web site, these CM systems look suspiciously like end-to-
end CASE tools that require significant commitment of resources, including functions
such as configuration management tools, databases, traceability tools, make tools,
workflow tools, and audit and reporting tools. Businesses already have mature,
established tools for most of these tasks, and it is unlikely that they will switch over to a
single system for managing all of this functiona lity.

Also, there seems to be some fuzziness on what certificates are and how much assurance
they can provide. Given a formal proof of some safety property on source or object code
and the code itself, one can derive a very high level of confidence by mechanically
checking the proof. On the other hand, given an informal safety property and an
informally generated fault tree, what kind of guarantees can a certificate provide? In this
case, it is difficult to see what benefit CM systems would provide ove r a simple code-
signing approach provided by component tools such as Microsoft’s .NET assemblies or
Java JAR files.

We would suggest that most of the interesting and beneficial features of CM can be
hosted as relatively self-contained “plug- ins” to existing tools. A tool like DOORS
already has sophisticated traceability, linking, and reporting facilities. Plug- ins could be
created to both help generate and check whether formal relationships hold between two
artifacts within the database. Just this aspect of certificate management presents an
enormous challenge, as there is a wide range of logics that can be used to check these
properties and potential formats for certificates, not to mention challenges in automating
the generation of certificates. It seems unnecessary and unwise to try to tackle software
management issues that are capably handled by existing tools.

4. Conclusion
Formal tools and techniques are increasingly used in practice to help create and verify the
behavior of critical software systems. Certification management systems have the

25

potential to significantly streamline and formalize many of analyses that are required in
avionics standards such as DO178B [6]. However, tools to support certification
management are still in their infancy. To see significant industrial adoption, they must be
fairly easy to use and integrate with existing configuration management and traceability
tools. In order to be widely adopted, these tools must also integrate well into a
certification story that is acceptable to authorities such as the FAA, since they ultimately
decide whether a system is airworthy.

References
[1] A. Benveniste, P. Caspi, S. Edwards, N. Halbwachs, P. Le Guernic, and R.de Simone, The

Synchronous Languages 12 Years Later, Proceedings of the IEEE, Volume 91, Issue 1,
January 2003.

[2] C. Heitmeyer, R. Jeffords., and B. Labaw, Automated Consistency Checking of
Requirements Specification, ACM Transactions on Software Engineering and Methodology
(TOSEM), 5(3):231-261, July 1996.

[3] J. Thompson, M. Heimdahl, and S. Miller.: Specification Based Prototyping for Embedded
Systems, Proceedings of the Seventh ACM SIGSOFT Symposium on the Foundations on
Software Engineering, LNCS 1687, September 1999.

[4] Esterel Technologies, http://www.esterel-technologies.com.
[5] James Dabney and Thomas Harmon, Mastering Simulink, Pearson Prentice Hall: Upper

Saddle River, NJ, 2004.
[6] RTCA. Software Considerations In Airborne Systems and Equipment Certification

(DO178B), RTCA, 1992
[7] IRST, http://nusmv.irst.itc.it/, The NuSMV Model Checker, Trento Italy
[8] Marco Bozzano, Antonella Cavallo, Massimo Cifaldi, Laura Valacca, and Adolfo

Villafiorita, Improving Safety Assessment of Complex Systems : An Industrial Case Study.
Proceedings of Formal Methods 2003 (LNCS 2805), Springer-Verlag, pages 208-222, 2003.

[9] R. Butler, S. Miller, J. Potts, and V. Carreno, A Formal Methods Approach to the Analysis
of Mode Confusion, Proceedings of the 17th AIAA/IEEE Digital Avionics Systems
Conference, Bellevue, WA, October 1998.

[10] S. P. Miller, M. P.E. Heimdahl, and A.C. Tribble, Proving the Shalls, Proceedings of FM
2003: the 12th International FME Symposium, Pisa, Italy, Sept. 8-14, 2003.

[11] K. L. McMillan, Circular Compositional Reasoning About Liveness, Cadence Berkeley Labs
Technical Report 1999-02, Berkeley, CA, 1999.

[12] Telelogic, Inc. DOORS product description web page.
http://www.telelogic.com/products/doorsers/index.cfm

[13] PolySpace Technologies, Inc. PolySpace product description web page.
http://www.polyspace.com

26

CERTIFYING SOFTWARE
FIT FOR PURPOSE
Graeme Parkin and Peter Harris,
National Physical Laboratory
Page 1 of 4 21 October 2005

1 Introduction
The use of software in measurement systems has dramatically increased over the last few years,
making devices easier to use, more reliable and more accurate. However the hidden complexity within
the software is a potential source of undetected errors. Since it is hard to quantify the reliability or
quality of such software, two questions arise:

o As a user of such a system, how can I be assured that the software is of sufficient quality to
justify its use?

o As a supplier of such software, what validation techniques should I use, and how can I assure
my users of the quality of the resulting software?

A means to certify that software is fit for purpose is required by both users and suppliers of
measurement systems. It is not possible to test software exhaustively. There are many examples
reported in the public domain of errors in software that have been very costly, either in money or life.
For example, the Ariane 5 launcher ended in failure, the launcher veered off its flight path, broke up
and exploded costing $370 million, due to a wrong conversion of a 64 bit value1. So even when best
practice has been applied software can still have bugs. There are many possible techniques that can be
applied in the development of software to reduce the number of errors. However the application of
these techniques costs both time and money with diminishing returns.
An approach is described which determines which techniques should be used to produce software fit
for purpose. This is illustrated by an example. It is also explained why instrument manufacturers are
interested in this work for certifying products for safety-critical applications.

2 A solution
A risk analysis approach is taken to determine the techniques to be applied in the development of
software which is fit-for-purpose. The risk analysis is based on three parameters, criticality of usage,
complexity of processing and complexity of control, to which values are assigned. Each parameter
can take one of four values. Criticality of usage values are one of critical, business critical, potentially
safety-critical and safety-critical. Complexity of processing values are one of very simple, simple,
moderate and complex. Complexity of control values are one of very simple, simple, moderate and
complex. A further consideration is any legal obligations that may have to be met. Having assigned
values to the risk parameters a Measurement Software Level (MSL) is determined based on Table 1.
Having calculated a MSL, Table 2 is used to determine the techniques to develop the software so that
it is fit-for-purpose. The Guide assumes a quality system is in place e.g ISO 9000 series of standards2.

3 Application
In a recent application of the approach it was required to produce reference software for the
calculation of surface texture parameters based on a profile3 and be able to read profile data in SMD
format4. The software was also required to work across platforms and give the same results on each.
An example of a parameter is shown in Figure 1. Figure 2 shows briefly the derivation of the MSL,
the techniques to be used to meet that MSL and the tools used. Other tools used were an IDE (BlueJ
2.0.3), component testing (JUnit 3.8.1) and a Java-based build tool (Ant 1.6.2).

1 N° 33-1996: Ariane 501 - Presentation of Inquiry Board report.
2 ISO 9001 2000: Quality management systems -- Requirements, ISO IEC 90003 2004: Software engineering -
Guidelines for the application of ISO 9001:2000 to computer software.
3 ISO 4287 Geometrical Product Specifications (GPS) -- Surface texture: Profile method -- Terms, definitions
and surface texture parameters. 1997.
4 ISO 5436-2 Geometrical Product Specifications (GPS) -- Surface texture: Profile method; Measurement
standards -- Part 2: Software measurement standards. 2001.

27

PRODUCING SOFTWARE
FIT FOR PURPOSE
Graeme Parkin and Peter Harris
Page 2 of 4 21 October 2005

4 The guide
The process outlined in the previous sections is much more fully described in Best Practice Guide
No1, Validation of Software in Measurement Systems5. The guide has been designed to be used as the
basis of certification services mainly with auditable checklists.

Impact of complexity of control Criticality of
usage

Complexity
of Processing Very simple Simple Moderate Complex
Very simple 0 0 1 2
Simple 0 1 1 2
Moderate 1 1 2 2

Critical

Complex 2 2 2 2
Very simple 0 1 1 2
Simple 1 1 2 2
Moderate 1 2 2 2

Business
Critical

Complex 2 2 2 3
Very simple 1 1 2 2
Simple 1 2 2 3
Moderate 2 2 3 3

Potentially
life-critical

Complex 2 3 3 3
Very simple 2 2 2 3
Simple 2 2 2 3
Moderate 2 2 3 4

Life-critical

Complex 3 3 4 4
Table 1 Measurement Software Level as function of risk factors (see Guide for further details)

Furthermore the guide, when used for safety-critical software, assists compliance with the
international standard for functional safety IEC 61508. The guide is to be used as input to determining
a means to certify products to IEC 61508 by the 61508 Association6 which was set up by instrument
manufacturers in the UK. Currently the guide is being used to evaluate the software in alarm
annunciators for Evaluation International7.

5 Development of the guide
The guide was designed to provide advice which would satisfy a range of standards including:
ISO/IEC 170258, Legal metrology9, IEC 601-1-410, IEC 6150811 and DO-178B12. The techniques

5 Software Support for Metrology, Best Practice Guide No. 1, Validation of Software in Measurement Systems
Brian Wichmann, Graeme Parkin and Robin Barker March 2004, Version 2.1,
http://www.npl.co.uk/ssfm/download/documents/ssfmbpg1.pdf (freely available).
6 http://www.61508.org.uk/
7 http://www.evaluation-international.com/
8 ISO/IEC 17025: 2005. General requirements for the competence of testing and calibration laboratories.
9 WELMEC 2.3 Guide for examining software (Non-automatic weighing instruments), January 1995.
WELMEC 7.1 Software requirements on the basis of the measuring instruments directive, January 2000. Both
available at http://www.welmec.org/pubs.asp.
10 IEC 601-1-4 Medical electrical equipment – Part 1: General requirements for safety 4: Collateral standard:
Programmable electrical medical systems.
11 IEC 61508: Parts 1-7, Functional safety of electrical/electronic/programmable electronic (E/E/PE) safety-
related systems.

28

http://www.npl.co.uk/ssfm/download/documents/ssfmbpg1.pdf
http://www.welmec.org/pubs.asp

PRODUCING SOFTWARE
FIT FOR PURPOSE
Graeme Parkin and Peter Harris
Page 3 of 4 21 October 2005

mentioned in the guide have been selected based on industry acceptance, tool support and ease of
being audited. The guide has been reviewed, and their comments taken into account by persons in the
following application areas of nuclear, medical, safety-critical and certification.

Measurement Software Level Ref. Recommended Technique
1 2 3 4

12.2 Review of informal specification Yes Yes
12.3 Software inspection of specification Yes Yes
12.4 Mathematical specification Yes Yes Yes Yes13

12.5 Formal specification Yes13

12.6 Static analysis Yes Yes Yes13

12.6 Boundary value analysis Yes Yes
12.7 Defensive programming Yes Yes
12.8 Code review Yes Yes
12.9 Numerical stability Yes Yes Yes13

12.10 Microprocessor qualification Yes13

12.11 Verification testing Yes Yes13

12.12 Statistical testing Yes Yes
12.13 Structural testing Yes
12.13 Statement testing Yes Yes
12.13 Branch testing Yes Yes13

12.13 Boundary value testing Yes Yes Yes13

12.13 Modified Condition/Decision testing Yes13

12.15 Accredited testing Yes
12.16 System-level testing Yes Yes
12.17 Stress testing Yes Yes
12.18 Numerical reference results Yes Yes Yes13 Yes13

12.19 Back-to-back testing Yes Yes
12.20 Source code with executable Yes13

Table 2 Recommended Techniques (see the guide for further details)

∑
=

=
m

i iXs
m

RSm
1

1

Figure 1 Spacing parameter RSm for a roughness profile

12 DO-178B Software Considerations in Airborne Systems and Equipment Certification. Issued in the USA by
the Requirements and Technical Concepts for Aviation (document RTCA SC167/DO-178B) and in Europe by
the European Organization for Civil Aviation Electronics (EUROCAE document ED-12B). December 1992.
13 These are still suggestions for MSL4 or, in the case of MSL3 are to be used if no alternative.

29

PRODUCING SOFTWARE
FIT FOR PURPOSE
Graeme Parkin and Peter Harris
Page 4 of 4 21 October 2005

Risk analysis
o No legal requirements
o Business critical
o Simple complexity of control
o Moderate complexity of processing

(plus other issues like ease of testing etc.)

Measurement Software Level
= 2

Ref. Recommended Technique MSL 2 Used How this is met
12.2 Review of informal specification Yes Yes -
12.3 Software inspection of specification Yes No Based on international standard
12.4 Mathematical specification Yes Yes MATLAB 7.0
12.5 Formal specification Not applicable
12.6 Static analysis Yes Yes Java compiler 1.4.2_4,

Checkstyle 3.3
12.6 Boundary value analysis Yes Yes -
12.7 Defensive programming Yes Yes -
12.8 Code review Yes Yes Checkstyle 3.3
12.9 Numerical stability Yes Yes -
12.10 Microprocessor qualification Not applicable
12.11 Verification testing Not applicable
12.12 Statistical testing Yes No -
12.13 Structural testing Not applicable
12.13 Statement testing Yes Yes Clover 1.3_02
12.13 Branch testing Yes Clover 1.3_02
12.13 Boundary value testing Yes Yes -
12.13 Modified Condition/Decision testing Not applicable
12.15 Accredited testing Yes No Not applicable
12.16 System-level testing Yes Yes -
12.17 Stress testing Yes Yes Tested for large data sets
12.18 Numerical reference results Yes No -
12.19 Back-to-back testing Yes Yes Against MATLAB specifications
12.20 Source code with executable Not applicable

Figure 2 Shows derivation of MSL and techniques used for the surface texture reference
software

6 Summary
A means to certify software so that is fit for purpose has been briefly described. A service to certify
software using the guide is being set up. Further work includes getting the guide more widely
accepted, possibly through standardisation and developing guides on the use, application and
evaluation of software development tools e,g, code coverage tools.

30

On the Scalability of Proof Carrying Code for

Software Certification?

Andrew Ireland

School of Mathematical and Computer Sciences
Heriot-Watt University

Edinburgh, Scotland, UK
a.ireland@hw.ac.uk

Abstract. Proof Carrying Code provides an approach to software certifi-
cation, where trust management is decentralized. The approach has been
successfully applied to relatively simple properties. Here we consider the
scalability of the approach when more comprehensive properties are consid-
ered, e.g. functional properties. We argue that tactic-based theorem proving,
and in particular proof plans, have a role to play in addressing the issue of
scalability.

1 Introduction

Within the Proof Carrying Code (PCC) paradigm [7], software certificates corre-
spond to formal proofs, i.e. a proof that a program satisfies a given safety policy.
The responsibility for proof construction lies with the code producer, while a rel-
atively light-weight proof checking process is all that is required on the consumer
side. Moreover, the consumer does not need to trust the producer or any third-
party intermediaries. As a consequence, PCC decentralizes trust management, i.e.

the trusted computing base is minimal and local to the consumer.
Initially, proofs were relatively large, given the size of code involved. Significant

progress, however, has been made in reducing the size of proofs, i.e. software cer-
tificates. In particular, an approach known as Oracle-based Proof Carrying Code

(OPCC) uses oracle strings [8] as a means of representing the minimal information
required for proof checking, i.e. the checker is only provided with information when
a choice is required. Proof tactics have also been used to reduce the size of proofs,
i.e. large proof steps defined in terms of tactics. This is known as Tactic-based

Proof Carrying Code (TPCC) [1]. Of course within TPCC, the tactic definitions are
required for proof checking, thus increasing the machinery on the consumer side.

PCC has been mainly concerned with safety properties, such as type safety and
memory management safety. The relative light-weight nature of these properties
has meant that proof construction corresponds to type inference. The need for more
comprehensive properties is widely recognized. For instance, the MOBIUS project1

has identified the need for comprehensive policies, such as functional properties,
as one of the “challenges that lie far beyond the current state-of-the-art”. Meeting
this challenge will increase the burden of proof associated with PCC, both in terms
of proof construction and communication. Below we explore these issues in more
detail.

2 Proof Construction

Extending PCC to include functional properties introduces all the complexities that
are associated with software verification, e.g. the need for code to be annotated

? The work discussed was supported in part by EPSRC grant GR/S01771.
1 MOBIUS: http://mobius.inria.fr/twiki/bin/view/Mobius.

31

with auxiliary assertions, such as loop invariants. The current focus on type-based
methods will need to be combined with logic-based methods. In particular, theorem
proving and program analyzers that assist with the generation of code annotations
will be required.

We believe that the technique known as proof planning [3] also has a role to
play here. Proof planning is a computer-based technique for automating the search
for proofs. At the core of the technique are high-level proof outlines, known as
proof plans. A proof plan embodies a generic tactic and is typically hierarchical in
structure. Proof planning is the process by which a customized tactic is constructed
for a given conjecture. The generic nature of a proof plan makes for a robust style of
reasoning, i.e. proof planning can deal with changes to a conjecture, as long as the
changes fall within the scope of the given proof plan. The use of proof planning to
support proof construction would therefore represent a natural extension to TPCC.
In terms of program analysis, proof planning has also demonstrated its value through
the NuSPADE project2, where proof planning was investigated within the context
of verifying software written in SPARK [2]. In particular, proof-failure analysis, a
key feature of proof planning, was used in conjunction with program analysis to
guide the generation of loop invariants [4–6].

3 Proof Communication

As noted above, OPCC and TPCC have achieved significant reductions in the size
of proofs. It is unclear, however, whether or not these approaches will scale to meet
the challenges associated with more comprehensive properties. Here we propose an
alternative approach. Instead of communicating a proof, or how to construct a proof
(via a tactic or proof oracle), we propose communicating what knowledge is required
in order for the consumer to re-construct a producer’s proof. What we will refer to
as Proof Plan Carrying Code (PPCC), can be viewed as an extension of TPCC.
To achieve PPCC, we envisage the notion of a Proof Planning Oracle (PPO) , i.e.

information on which proof plans and theories were used in planning a particular
conjecture or class of conjectures. We see PPOs as an optional input/output to the
existing proof planning framework. That is, the producer will use a proof planner
to generate a PPO which is then used to constrain proof planning on the consumer
side.

While PPOs will significantly reduce the size of software certificates, it will also
significantly increase the burden on the code consumer. Firstly, the code consumer
will require access to the proof plan and theory repositories referenced by the PPO
– introducing the problem of managing distributed repositories. Secondly, the code
consumer will be required to run a proof planner as well as a proof checker – in-
creasing the consumer’s computational overhead. Note however that the PPO will
significantly reduce the search involved in re-constructing proofs on the consumer
side. As is the case with TPCC, this additional overhead will exclude on-device
proof checking. For many applications this would be a show-stopper, e.g. smart
card applications with minimal resources. However, we believe that such applica-
tions will also rule-out on-device proof checking with respect to the more compre-
hensive properties that are currently being considered. So where on-device checking
is not essential, but where comprehensive properties are mandatory, then PPCC
may provide a practical approach.

2 NuSPADE: http://www.macs.hw.ac.uk/nuspade.

2

32

4 Conclusion

PCC has been applied successfully to relatively simple properties. Targeting more
comprehensive properties raises questions about the scalability of current approaches.
We have argued that proof plans have a role to play in addressing the scalability of
proof construction. In terms of representing software certificates, we have proposed
the use of proof planning oracles as a technique for reducing the size of formal
proofs.

References

1. D. Aspinall, S. Gilmore, M. Hofmann, D. Sannella, and I. Stark. Mobile resource
guarantees for smart devices. In Proc. Intl. Workshop on Construction and Analysis of
Safe, Secure and Interoperable Smart Devices (CASSIS 2004), volume 3362 of Lecture
Notes in Computer Science, pages 1–26. Springer, 2005.

2. J. Barnes. High Integrity Software: The SPARK Approach to Safety and Security.
Addison-Wesley, 2003.

3. A. Bundy. The use of explicit plans to guide inductive proofs. In R. Lusk and R. Over-
beek, editors, 9th International Conference on Automated Deduction, pages 111–120.
Springer-Verlag, 1988. Longer version available from Edinburgh as DAI Research Paper
No. 349.

4. B.J. Ellis and A. Ireland. Automation for exception freedom proofs. In Proceedings
of the 18th IEEE International Conference on Automated Software Engineering, pages
343–346. IEEE Computer Society, 2003. Also available from the School of Mathematical
and Computer Sciences, Heriot-Watt University, as Technical Report HW-MACS-TR-
0010.

5. B.J. Ellis and A. Ireland. An integration of program analysis and automated theorem
proving. In E.A. Boiten, J. Derrick, and G. Smith, editors, Proceedings of 4th Inter-
national Conference on Integrated Formal Methods (IFM-04), volume 2999 of Lecture
Notes in Computer Science, pages 67–86. Springer Verlag, 2004. Also available from the
School of Mathematical and Computer Sciences, Heriot-Watt University, as Technical
Report HW-MACS-TR-0014.

6. A. Ireland, B.J. Ellis, A. Cook, R. Chapman, and J. Barnes. An integrated approach
to program reasoning. Technical Report HW-MACS-TR-0027, School of Mathematical
and Computer Sciences, Heriot-Watt University, 2004.

7. G. C. Necula. Proof-carrying code. In Conference Record of POPL ’97: The 24th
ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, pages
106–119, Paris, France, jan 1997.

8. G.C. Necula and S.P. Rahul. Oracle-based checking of untrusted software. In POPL:
28th ACM SIGACT-SIGPLAN Symposium on Principles of Programming Languages,
2001.

3

33

34

Software Certification for Temporal Properties
with Affordable Tool Qualification

Songtao Xia and Ben Di Vito

Mail Stop 130
NASA Langley Research Center

Hampton, VA 23281
{s.xia, b.l.divito}@larc.nasa.gov

Abstract. It has been recognized that a framework based on proof-
carrying code (also called semantic-based software certification in its
community) could be used as a candidate software certification process
for the avionics industry. To meet this goal, tools in the “trust base” of a
proof-carrying code system must be qualified by regulatory authorities.
A family of semantic-based software certification approaches is described,
each different in expressive power, level of automation and trust base.
Of particular interest is the so-called abstraction-carrying code, which
can certify temporal properties. When a pure abstraction-carrying code
method is used in the context of industrial software certification, the
fact that the trust base includes a model checker would incur a high
qualification cost. This position paper proposes a hybrid of abstraction-
based and proof-based certification methods so that the model checker
used by a client can be significantly simplified, thereby leading to lower
cost in tool qualification.

1 Introduction

Safety critical programs, such as those controlling an airplane, a nuclear power
plant, or a medical system, are subject to the highest level of verification and
validation (V & V) effort, which is often outlined by administrative authorities.
For example, to deploy an autopilot program onboard an aircraft, the vendor
must supply evidence to a Federal Aviation Administration (FAA) representative
that shows compliance to FAA’s guidelines [11]. The certification process used
in the aviation industry currently relies heavily on peer review and testing.

Many properties of a software product, such as correctness, or general as
well as domain-specific safety, may be proven via deduction, synthesis, or other
techniques [10, 1, 9, 5]. If the vendor proves the property and presents the proof
to the FAA representative, the representative may check the proof and con-
clude that the system is indeed safe or correct relative to a specification. Such
a scheme is known as proof-carrying code [10]. In a general setting, the vendor
may not have to provide a proof, but some intermediate, semantic-based objects
(collectively called a certificate) that help to establish the proof. The general-
ized category of approaches is known as semantic-based software certification.

35

2 Xia and Di Vito

The soundness of such a framework, however, is based on the assumption that
programs constituting the “trust base” are correctly implemented.

Semantic based software certification was originally designed for the safe dis-
tribution of software in an untrusted environment. The approach can be adapted
to software certification in avionics and other industries. A significant gap be-
tween research and industrial practice is the lack of qualified tools.1.

It is necessary to distinguish two sets of tools. Besides the trust base, there
are often other tools involved in a semantic-based software certification/re-
verification process. Naturally, the tools in the trust base should be more strictly
scrutinized because their failure can allow errors to propagate to final products.
It is expected that tools in the trust base will incur higher cost during qualifi-
cation because of their higher criticality.

This suggests the need for architectural principles for designing tools to
achieve desired trust goals. Choosing an optimal partitioning of components
into trusted and untrusted sets becomes an important decision. Considering the
high cost of qualification, the functionality needs to be decomposed in a way
such that the combined cost of qualifying the tools is minimal.

Thus, the problem of selecting tools to qualify is a choice among approaches
that have the required expressive power and trust attributes, and also allow a de-
composition of the functionality that incurs acceptable qualification cost. Of par-
ticular interest in this paper is the case of abstraction-carrying code[14], which
certifies temporal properties. Its trust base contains a model checker, which is
an additional component beyond those of most other certification methods.

2 Abstraction-Carrying Code

In a sense, the concept of semantic-based program certification can be under-
stood as decomposed program verification. Consider a vacuous program certifi-
cation technique, where the certificate contains nothing. In this case, the regu-
latory authority (represented by and referred to hereafter as a DER, Designated
Engineering Representative) has to verify the program on her own. If hints, for
example, a loop invariant, are provided by the vendor, the DER is relieved of
discovering this fact. But she needs to reverify that the loop invariant is indeed
a loop invariant. On the trust base side, a data-flow analyzer that she may trust
is now replaced by a simpler data-flow fact verifier. Because simpler programs
are less expensive to qualify, and because we have assumed that a tool in the
trust base requires a stricter, more expensive qualification process, the setting
in which the vendor provides such a hint is beneficial in terms of tool qualifica-
tion cost. As a principle, we should exploit this trade-off between the amount
of information (size of certificate) provided by the vendor and the complexity of
the trust base.

Traditionally, semantic-based program certification is proof-based. In theory,
this scheme works for any properties that can be formalized in the underlying
1 Other issues include, and are not limited to, recognition, training, and expressive

power/tool support.

36

Qualifiable Model Checkers 3

logic. And in practice, proofs can be generated for many safety properties even
if approaches other than theorem proving are used. However, sometimes for
general temporal properties, generating a proof may not be feasible. A different
paradigm based on abstraction-carrying code is proposed. Table 2 lists several
different, real or imaginary certification settings with their expressive power and
associated trust base.

Certification Method Properties Trust Base

1 Null Certificate provable properties every tool needed for proving

2 Touchstone type and memory safety VCGen and proof checker

3 AutoBayes domain specific safety VCGen and proof checker
and memory safety

4 Any proof provable properties VCGen and proof checker

5 Abstraction-carrying code temporal properties VCGen, proof checker
and model checker

The first row in the table refers to the no-certificate situation. The second
row roughly corresponds to the setting of the original PCC work by Necula and
Lee [10], where type safety and memory safety is of concern, where the trust
base contains a verification condition generator (VCGen) and a proof checker.
Row 3 represents the application of PCC techniques in the verification of domain-
specific properties. For example, work by Denney et. al., automatically generates
programs with proof-carrying code style proofs for domain specific safety prop-
erties[5]. Row 4 corresponds to the setting where the client uses a proof assistant
(and probably a lot of human effort) to prove properties of concern.

Our focus is on Row 5, which corresponds to the abstraction-carrying code
research by Xia and Hook [15, 14]. The idea is to apply predicate abstraction [6]
and model checking to a program to verify an LTL property. Predicate abstrac-
tion may be automated by adopting counter-example driven predicate discovery
[2, 4]. In this process, a predicate abstraction of the program is generated and
passed to a DER. A DER will first verify that the abstract model is faithful to
the program and then verify that the property does hold on the abstract model.
The faithfulness check can be implemented much the same way as in PCC, that
is, via a VCGen and a proof checker.

The proof-carrying code literature has elaborated how the VCGen and proof
checker may be constructed in a simple manner. For example, a typed assembly
language approach [8] can adopted for VCGen construction and a higher order
logic framework [10] is used in proof checking. Our research is focused on how
to restructure a model checker to achieve similar results.

3 Qualifiable Model Checkers

One of the initial design goals of abstraction-carrying code is to reduce the size
of the certificate because of the need to transport it and check it at run time. In

37

4 Xia and Di Vito

certifying for administrative approval, however, size is not an important factor.
There are approaches that generate proofs for certain sub-categories of proper-
ties after predicate abstraction/model checking[9, 7]. But such an approach may
not be feasible for general LTL formulas. Therefore, the ability of abstraction-
carrying code to certify temporal properties is still useful. In ACC, the trust base
includes a model checker, which is absent from PCC. We are going to explore
the trade-off between certificate size and complexity of the trust base to build a
more cost-effectively qualifiable model checker.

The model checker to be used by a DER in abstraction-carrying code is differ-
ent from a general purpose model checker: it checks an abstract model known as
a Boolean program (BP)[3]. A typical BP statement tests if a propositional for-
mula holds given an environment, represented as another propositional formula,
and changes the state accordingly. Compared to a model checker for a target
program, for example, the Java Pathfinder [13], the model checker for a Boolean
program does not need to handle the semantics of the object language. In con-
trast, more than half of the code in Java Pathfinder implements the semantics
of a virtual machine.

Still, this model checker is a fairly complicated program. For example, Moped
[12], contains 10 K lines of C code, not counting the supporting BDD library.
To reduce the size of this model checker while still achieving the requirements
of re-verification, we resort to the tools that already exist in the trust base: the
VCGen and the proof checker. Specifically, we use a hybrid approach to reuse
some of the model checking work that would be performed by the vendor during
the original analysis. This tool can be more complicated because it is not in the
trust base. We enhance the vendor’s model checker to record every transition
made by the model checker. That is, for a transition (a BP statement t) that
moves the system state (represented as a propositional formula) from s1 to s2, we
note down the triple (s1, t, s2). Then the reduced model checker does not have to
compute s2, but just verify that t(s1) is s2. Further, because the application of t
to a state can be reduced to the test of satisfiability in propositional logic, we may
simply keep a record of the piece of evidence that a proposition can be satisfied.
This way, we can replace the SAT solver, or the BDD package used in the model
checker with a Boolean evaluator. The DER will run this reduced model checker,
which, when a satisfiability problem in the Boolean domain is needed, will just
verify the proof presented by the vendor. In this way, the semantic engine needed
to analyze the Boolean program is simplified.

We are at the very early stage of this investigation. We are aware that the
complexity of the trust base is only one of the many factors involved in tool
qualification. Still, we expect to build a prototype system that can be plugged
into our previous implementation of an ACC system called ACCEPT/C and
evaluate the effectiveness of this reduced model checker. Our effort also involves
extending ACCEPT/C to support more interesting properties (that is, safety
properties commonly seen as part of requirements in aviation systems). This part
we have been initially successful [16]. Together, the simplified model checker and
enhanced ACCEPT/C will allow exploration of the primary trade-off: deliver-

38

Qualifiable Model Checkers 5

ing more detailed evidence at certification time in exchange for the benefits of
reduced-complexity verification tools.

References

1. A. Appel. Foundational Proof-carrying Code. In Proceeding of 16th IEEE Sympo-
sium on Logics in Computer Science (LICS), June 2001.

2. T. Ball. Formalizing counter-example driven predicate refinement with weakest
preconditions. Technical Report MSR-TR-2004-134, Microsoft Research, 2004.

3. T. Ball and S. Rajamani. Automatically Validating Temporal Safety Properties of
Interfaces. In SPIN2001, Lecture Notes in Computer Science 2057, pages 103–122.
Springer-Verlag, May 2001.

4. E. M. Clarke, O. Grumberg, S. Jha, Y. Lu, and H. Veith. Counterexample-Guided
Abstraction Refinement. In Proceedings of the Conference on Computer Aided
Verification (CAV), pages 154–169, 2000.

5. E. Denney and B. Fischer. Certifiable program generation. In Proceedings of
Generative Programming and Component Engineering, 2005.

6. S. Graf and H. Saidi. Construction of Abstract State Graphs with PVS. In Pro-
ceedings of Conference on Computer Aided Verification (CAV) 97, Lecture Notes
in Computer Science 1254, pages 72–83, Haifa, Israel, June 1997. Springer-Verlag.

7. T. Henzinger, R. Jhala, R. Majumdar, G. Necula, G. Sutre, and W. Weimer.
Temporal-Safety Proofs for Systems Code. In Proceedings of Conference on
Computer-Aided Verification (CAV), pages 526–538, 2002.

8. G. Morrisett, D. Walker, K. Crary, and N. Glew. From System F to Typed As-
sembly Language. ACM Transactions on Programming Languages and Systems,
21(3):527–568, 1999.

9. K. S. Namjoshi. Certifying Model Checkers. In Proceedings of 13th Conference on
Computer Aided Verification (CAV), 2001.

10. G. Necula. Compiling with Proofs. PhD thesis, Carnegie Mellon University, 1998.
11. RTCA SC-167 and EUROCAE WG-12. Software considerations in airborne sys-

tems and equipment certification, December 1992.
12. S. Schwoon. Moped software. Available at http://wwwbrauer.informatik.tu-

muenchen.de/˜ schwoon/moped/.
13. W. Visser, S. Park, and J. Penix. Applying Predicate Abstraction to Model Check

Object-oriented Programs. In Proceedings of the 33rd ACM SIGSOFT Workshop
on Formal Methods in Software Practice.

14. S. Xia. Abstraction-based Certification of Temporal Properties of Software Modules.
PhD thesis, OGI School of Science and Engineering, Oregon Health and Science
University, 2004.

15. S. Xia and J. Hook. Certifying Temporal Properties for C programs. In Proceed-
ings of Verification, Model Checking and Abstract Interpretation (VMCAI) 2004,
Lecture Notes in Computer Science 2974, 2004.

16. S. Xia, B. D. Vito, and C. Munoz. Predicate abstraction of engineering programs.
Manuscript, 2005.

39

40

Reusing Proofs when Program Verification Systems are Modified

Bernhard Beckert, Thorsten Bormer, and Vladimir Klebanov
Institute for Computer Science
University of Koblenz-Landau
www.key-project.org

Abstract

In this position paper, we describe ongoing work on re-
using deductive proofs for program correctness when the
verification system itself is modified (including its logic, its
calculus, and its proof construction mechanism).

We build upon a method for reusing proofs when the pro-
gram to be verified is changed, which has been implemented
within the KeY program verification system and is success-
fully applied to reuse correctness proofs for Java programs.

1. Motivation

Proof reuse in program verification is mostly thought of
as a means to more easily construct a proof for the correct-
ness of some program p in cases where a proof for a similar
program p

′ (or the same program p with a slightly differ-
ent specification) is already available.

If proofs are used as certificates for the correctness of
programs, however, there is an even more important rea-
son for reuse. One has to be able to reuse proofs in case
the proof system is modified. While changing the program
that is to be verified has only local effects in that only the
proofs for that particular program are invalidated, modify-
ing the verification system globally affects and potentially
invalidates all proofs done so far. Since proofs that serve as
certificates for program correctness need to be maintained
over a longer period, possibly over many years, modifica-
tions to the proof system are to be expected over the life-
time of proofs. Thus, being able to reuse proofs when the
system is modified is an indispensable feature of any pro-
gram verification infrastructure that is put to serious practi-
cal use.

In [5], we have presented a method for reusing correct-
ness proofs when the program changes. That method has
been successfully implemented within the KeY system [7,
1] (see Sect. 2) to reuse correctness proofs for Java pro-
grams. It can handle many different types of changes in

the program to be verified, such as adding/changing/delet-
ing statements, changing (sub-)expressions, changing the
control structure (e.g., by adding an if-statement), changing
the class hierarchy, and overwriting inherited method im-
plementations. It works well in practical everyday use; and
only rarely are old proof attempts reused in a less than opti-
mal way.

In this position paper, we describe ongoing work on the
extension of our method to handle modifications of the ver-
ification environment instead of the programs to be verified.
Possible modifications we consider include changes to the
program logic used in the system, changes to the rules of the
verification calculus, changes to the language used to repre-
sent these rules, and changes to the deductive engine of the
proof system.

Note that we are not formalizing our method in a meta-
logic, as it’s not helpful to achieve a working solution. Our
subject is a particular kind of proof search procedure, and
only valid proof objects can be constructed in any given
prover version anyway (this also applies to loading a proof
from a file). In a sense, the problem we are looking at is not
one of logics.

2. Background

The KeY Project. The KeY system [7, 1] is a comprehen-
sive environment for integrated deductive software design.
Software developed with KeY can be formally proven cor-
rect, i.e., behaving up to the given specification. In the KeY
process, the correctness of programs is formally proven by
establishing the validity of Java Dynamic Logic formulas
generated from the specification and the implementation of
a program. This correctness is asserted by an explicit proof
object.

The system is built on top of the CASE tool Borland
Together ControlCenter, which is an enterprise-grade plat-
form for UML-based software development. A version in-
tegrated with the popular open IDE Eclipse is also avail-
able. KeY augments this modeling foundation with an ex-
tension for formal specification, a verification middleware,

41

and a deduction component. Formal software specifications
are written either in Object Constraint Language (OCL),
which is part of the UML standard, or Java Modeling Lan-
guage (JML). The KeY extension offers facilities for author-
ing, rendering and analysis of formal specifications. The
verification middleware is the link between the modeling
and the deduction component. It translates the model (the
class diagram), the implementation (Java), and the specifi-
cation (OCL/JML) into Java Dynamic Logic proof goals,
which are passed to the deduction component. The verifi-
cation middleware is also responsible for managing proofs
during the development and verification process. The de-
duction component is a novel Java Dynamic Logic theorem
prover that is used to actually construct proofs for the proof
goal.
Java Dynamic Logic. Dynamic Logic (DL) can be seen to
be an extension of Hoare logic (see [6] for an overview). It is
a first-order modal logic with a modality 〈p〉 for every pro-
gram p (we allow p to be any sequence of Java statements
with the only restriction that they must not contain threads).
In the semantics of these modalities a world w (called state
in the DL framework) is accessible from the current world,
if the program p terminates in w when started in the current
world. The formula 〈p〉φ expresses that φ holds in some fi-
nal state of p. Considering sequential Java programs, there
is exactly one such final state for every initial state (if p ter-
minates) or there is no final state (if p does not terminate).
The formula φ→ 〈p〉ψ is valid if, for every state s satisfy-
ing precondition φ, a run of the program p starting in s ter-
minates, and in the terminating state the post-condition ψ
holds.
The KeY Calculus for Java Dynamic Logic. As usual for
deductive program verification systems, we use a sequent-
style calculus. The programs in Java DL formulas are basi-
cally executable Java code. The verification of a given pro-
gram can be thought of as symbolic code execution.

The rules of the Java DL calculus [3, 1] operate on the
first active command p of a program πpω; it is the focus of
their application. The non-active prefix π consists of an ar-
bitrary sequence of opening braces “{”, labels, etc. The pre-
fix is needed to keep track of the blocks that the (first) ac-
tive command is part of, such that the abruptly terminating
statements like throw and return can be handled appro-
priately. The postfix ω denotes the “rest” of the program,
i.e., everything except the prefix and the part of the pro-
gram the rule operates on.

Since there is (at least) one rule schema in the Java DL
calculus for each Java programming construct, we can here
only give a simple but typical example, the rule schema for
the if statement:

Γ, b = TRUE ` 〈π p ω〉φ
Γ, b = FALSE ` 〈π q ω〉φ

Γ ` 〈π if(b) p else q ω〉φ

The rule has two premisses, which correspond to the two
cases of the if statement. The semantics of this rule is
that, if the two premisses hold in a state, then the conclu-
sion is true in that state. In particular, if the two premisses
are valid, then the conclusion is valid. Note, that this rule is
only applicable if the condition b is known (syntactically) to
be free of side-effects. Otherwise, if b is a complex expres-
sion, other rules have to be applied first to evaluate b.

The Taclet Mechanism. The KeY system provides a formal-
ism for implementing rules (resp. rule schemata) called tac-
lets [4]. As the name suggests taclets can be considered as
lightweight, stand-alone tactics. They have a simple syntax
and semantics and have means to represent explicitly (i) the
pure logical content of a rule; (ii) restrictions or guards
on the expected context and position of a rule application;
(iii) heuristic information on whether and when a rule is ap-
plied automatically/interactively. Here is the same rule as
above formulated as a taclet:

find 〈π if(b) p else q ω〉φ
replacewith (〈π p ω〉φ) add (b = TRUE `);
replacewith (〈π q ω〉φ) add (b = FALSE `)

The KeY Proof Format. The KeY prover stores its proofs
as a proof script consisting of a stream of rule names, ap-
plication positions (as index into the sequent) and explicit
schema variable instantiations if these cannot be inferred
from the sequent. This format avoids excessive inclusion of
formulas in the file, since these include programs and can
be quite lengthy. On the other hand, this design does not
perform gracefully if—for some reason—the currently con-
structed proof object does not match the form expected in
the script.

3. Proof Reuse for Program Changes

In this section, we briefly describe our method presented
in [5], which allows to reuse proofs when the program to be
verified changes. It forms the basis for our work on reusing
proofs when the verification system is modified.

The Need For Proof Reuse Upon Changes in Programs. Ex-
perience shows that the prevalent use case of program verifi-
cation systems is not a single proof run. It is far more likely
that a proof attempt fails, and that the program (and/or the
specification, see Section 5.2) has to be revised. Then, af-
ter a small change, it is better to adapt and reuse the exist-
ing partial proof than to verify the program again from first
principles. This is of particular advantage for deductive ver-
ification systems (which we consider here), where proof re-
use reduces the number of required user interactions.

Features. The main features of our reuse method are:
(1) The units of reuse are single rule applications. That

is, proofs are reused incrementally, one proof step at a time.

42

This allows to keep our method flexible, avoiding the need
to build knowledge about particularities of the calculus, its
rules, and the target programming language into the reuse
mechanism.

(2) Proof steps can be adapted and reused even if the sit-
uation in the new proof is merely “similar” but not identical
to the template.

(3) In case reuse has to stop because a changed part in the
new program is reached that requires genuinely new proof
steps, reuse can be resumed later on when an unaffected part
is reached.

Basic Ideas. The rules of the calculus are represented by
rule schemata (taclets). Thus, at each proof step, there are
three choices that the reuse facility—like every incremen-
tal proof construction method—has to make: (a) the rule
(schema) to be applied, (b) the goal/position where it is ap-
plied (which we call the “focus” of the rule application),
and (c) instantiations for schema variables.

Our goal is to make—if possible—the same choices as
in the template proof. But that requires us to generalize and
extract the essence of the choices in the old proof such that
it can be applied to the (similar but different) situation in the
new proof.

For finding the rules that are candidates for choice (a),
such a generalization is readily available. The rule schemata
(i.e., the schematic representations of the rules) are natural
generalizations of particular rule applications. They are de-
fined by the developer of the verification calculus who has
the required insight to know what the essence of a rule ap-
plication is. We then adhere to the overall succession of rule
schema applications in the template proof. But, since proofs
are not linear, at each point in time there can still be several
candidate rules that compete for being used first.

Choice (b), i.e., the point where a candidate rule is to be
applied, is more difficult as it is hard to capture the essence
of a formula or sequent. To solve this problem, we use a syn-
tactical similarity measure on formulas. Fortunately, there
is usually only a moderate number of possibilities, because
program verification calculi are to a large degree “locally
deterministic”. That is, given a partial (new) proof, there is
for most rule schemata only a small number of potential ap-
plication foci.

Finally, to make choice (c), schema variable instantia-
tions are computed by matching the rule schema against the
chosen focus of application. Schema variables that do not
get instantiated that way, e.g., quantifier instantiations, are
simply copied verbatim from the old proof.

Finding Reusable Subproofs. Our main reuse algorithm re-
quires an initial list of reuse candidates. These initial can-
didates, which are rule applications in the old proof, can be
seen as the points where the old proof is cut into subproofs
that are separately reusable. They are the points where re-
use is re-started after program changes required the user or

the automated proof search mechanism to perform new rule
applications not present in the old proof. The choice of the
right initial candidates is crucial for reuse performance.

The way initial candidates are computed depends on the
way the program (and thus the initial proof goal) has chan-
ged. For changes affecting single statements (local changes)
we extract the differences right from the source files, using
the GNU diff utility. Non-local changes, such as renaming
of classes or changes in the class hierarchy, cannot be de-
tected in a meaningful way by the standard diff algorithm;
the user has to announce the changes separately. We are also
investigating application of the recently emerged techniques
for difference detection in object-oriented programs [2].

Adaptability. Our reuse approach is very flexible. The only
part that is to some extent adapted to the target calculus is
the similarity measure on formulas. But even that does not
incorporate any knowledge about particular rules but only
some limited information about the target programming lan-
guage (Java in our case) and general properties of the cal-
culus (e.g., that rules are typically applied at the beginning
of a program).

4. Proof Reuse for Modifications of the Verifi-
cation System

4.1. Recertification Strategy Catalogue

In this section, we discuss different modification scenar-
ios that we have encountered during the six years of devel-
opment of the KeY system. All verification systems are sub-
ject to evolution, and the ones that persistently store proof-
relevant information (proof scripts, lemmas, abstractions,
program invariants, etc.) have to deal with similar problems
as we did. We believe that developers of other deductive ver-
ification systems can profit from our experiences.

We classify the recertification strategies that are possible
responses to modifications of the verification environment
as follows:

A No action necessary. The old proof can be loaded with-
out modification.

B Automated recertification with the help of additional
information that has been provided at time of change.

C Machine-supported recertification while necessary ad-
ditional information is inferred during the process. In
this case we assume that the old proof can be loaded
into the system with the corresponding set of rules.

D Same as C, but in case the old proof cannot be loaded
into the system. Then, just the information available in
the stored proof file is available.

E No action possible/intended.

43

Γ, a = null ` 〈π NPE; ω〉φ

Γ, a 6= null ∧ (i < 0 ∨ i ≥ a.length) ` 〈π AOBE; ω〉φ

Γ, a 6= null ∧ i ≥ 0 ∧ i < a.length ` {a[i] := val}〈π ω〉φ

Γ ` 〈π a[i]=val ω〉φ

Γ, a = null ` 〈π NPE; ω〉φ

Γ, a 6= null ∧ (i < 0 ∨ i ≥ a.length) ` 〈π AOBE; ω〉φ

Γ, a 6= null ∧ i ≥ 0 ∧ i < a.length ∧ ¬storable(val, a) ` 〈π ASE; ω〉φ

Γ, a 6= null ∧ i ≥ 0 ∧ i < a.length∧storable(val, a) ` {a[i] := val}〈π ω〉φ

Γ ` 〈π a[i]=val ω〉φ

Figure 1. A rule for array assignment: initial and revised version. Differences are boxed.

In the following discussion of different types of modifi-
cations, we indicate what we believe is the right kind of
strategy to handle the respective modification. We currently
work on developing methods for strategies B, C, and D.

4.2. Changes of the Logic Syntax

The presence of a rich program and logic vocabulary
within the same formula makes designing a usable and at
the same time parseable logic syntax quite a challenge. Sev-
eral iterations were necessary to obtain a satisfactory solu-
tion.

The quantifier notation of exists x:int.prop(x)
was changed in order to allow fully qualified sort names, as
in \exists java.lang.Object o; prop(o). The
diamond modality notation had to be modified from the sim-
ple <program>formula to \<program\>formula in
order to allow a<b in place of lt(a,b). Proposed re-
certification strategy: B, as one could parse old proof ver-
sions with the associated old parser and then transform the
abstract representation into the new format. Furthermore,
stored KeY proofs rarely mentions formulas explicitly.

4.3. Changes of the Taclet Language

The taclet language used to define the rules of the KeY
prover is also subject to change. As clashes between tac-
let declaration keywords and JAVA identifiers became ap-
parent, an escaping mechanism was put in place (find ;

\find). Altogether this kind of change is transparent in the
stored proofs, as these only reference taclet names. Recer-
tification strategy: A. The semantics of the taclet language
has turned out to be exceedingly stable.

4.4. Changes in Parser/Disambiguation

Between the levels of syntax and semantics are changes
in parsing and disambiguation of logical expressions. An

example is a modification of the associativity of logic oper-
ators. The interpretation of the expression A ∧ B ∧ C has
changed from (A ∧ (B ∧ C)) to ((A ∧ B) ∧ C). In addi-
tion, the precedence between the state update operator and
arithmetic operators were changed in favor of the update so
that {update}a+ b evaluates to ({update}a)+ b instead of
the former meaning {update}(a+ b). Recertification strat-
egy: B. The old parser can be used to produce an AST, from
which an equivalent linearization for the new parser can be
generated using explicit brackets.

4.5. Changes in Formalization of the JAVA Lan-
guage Semantics

Sometimes minor errors in the symbolic execution rules
of the KeY calculus have to be fixed. This cannot be ruled
out, since one can never arrive from an informal specifica-
tion at a formal one by formal means. The KeY project on
regular bases performs the only measure suitable to mitigate
this: cross-checking our rules with other formalizations of
JAVA. A recent check of this kind [8] has discovered a miss-
ing case in our array assignment rule. The erroneous rule
and its correction are presented in Figure 1. Recertification
strategy: C. Small local changes allow a similarity-guided
proof reuse.

4.6. Changes in the Logical Structure of the Rules

At one point all rules containing a potential case distinc-
tion have been reformulated from the form (here’s an exam-
ple)

Γ ` ((a > b) → 〈π l = true; ω〉φ)∧
(¬(a > b) → 〈π l = false; ω〉φ)

Γ ` 〈π l = a > b ω〉φ

44

to a form employing a conditional formula

Γ ` if (a > b)
〈π l = true; ω〉φ else 〈π l = false; ω〉φ fi

Γ ` 〈π l = a > b ω〉φ

which has the advantage that one has to reason about the
condition only once. Recertification strategy: C, same as
above.

4.7. Changes in the Execution Engine

As noted in Section 2, it is important that the expected
shape of the proof object implicit in the proof script matches
the actual construction. This concordance can be disrupted
if the execution engine of the prover is either not determin-
istic or is purposefully changed.

Ordering of Proof Branches/Formulas. One degree of free-
dom left by the calculus is the way (i.e., position of) formu-
las are added to the sequent, and the ordering of the newly
generated subgoals whenever a rule has several premisses.

Recertification strategy: D, as it’s not possible to load the
old proof with a changed system.

The Link to the Program Model. The method call rule of
the KeY calculus simulates dynamic binding by a case dis-
tinction over all possible classes that offer a suitable imple-
mentation of the called method. The ordering of branches
is a potential nondeterminism source, which has been elim-
inated recently by applying alphabetical sorting. Recertifi-
cation strategy in case of change: D.

Changes in Logic Data Structures. Since stored proofs con-
tain numerical indices into the internal representation of
logical entities (formulas, terms), changes in this data struc-
ture affect the loading of proofs. Except one such change,
the representation has remained stable so far. Recertifica-
tion strategy: D as this problem class is similar to the one
dealing with the ordering of proof branches and formulas.

5. Further Related Issues

5.1. Changes of the JAVA Platform

In spite of Sun’s policy of upward source compatabil-
ity, new versions of the JAVA platform may bring changes
to the semantics of existing programs. We want to mention
here the introduction of new keywords and APIs (code has
to be rewritten to avoid clashes), bugfixes and updates to the
JAVA libraries (e.g., fixing the method StringBuffer.
append(StringBuffer) to be thread-safe or method
BigInteger.isProbablePrime(int)not to report
false for certain primes), or revisions of the JAVA Memory
Model (as proposed in JSR 133). The range of necessary re-
certification actions stretches from A to E, depending on the

particular case (e.g., whether the specification or the imple-
mentation of library methods was used in proofs, etc.).

5.2. Changes in Program Specification

The complementary case of a change in the program is a
changing specification. While the same techniques of proof
reuse should be applicable to some extent, a specification
is usually a higher-level description, and small changes are
likely to lead to bigger disruptions in proofs. We will not
pursue this issue here, as it affects individual problems only.

6. Conclusion

We have discussed possible modifications occurring dur-
ing the development and evolution of software verification
systems. A similarity-based method for proof reuse, which
has already been successfully implemented in the KeY sys-
tem, has been presented that handles program changes. Cur-
rently we extend and adapt this method to implement recer-
tification strategies of types B, C, and D.

References

[1] W. Ahrendt, T. Baar, B. Beckert, R. Bubel, M. Giese,
R. Hähnle, W. Menzel, W. Mostowski, A. Roth, S. Schlager,
and P. H. Schmitt. The KeY tool. Software and System Mod-
eling (SoSysM), 4:32–54, 2005.

[2] T. Apiwattanapong, A. Orso, and M. J. Harrold. A differ-
encing algorithm for object-oriented programs. In Proceed-
ings of the 19th IEEE International Conference on Automated
Software Engineering (ASE 2004), pages 2–13, Linz, Austria,
September 2004.

[3] B. Beckert. A dynamic logic for the formal verification of
Java Card programs. In I. Attali and T. Jensen, editors, Java
on Smart Cards: Programming and Security. Revised Papers,
Java Card 2000, International Workshop, Cannes, France,
LNCS 2041, pages 6–24. Springer, 2001.

[4] B. Beckert, M. Giese, E. Habermalz, R. Hähnle, A. Roth,
P. Rümmer, and S. Schlager. Taclets: A new paradigm for
constructing interactive theorem provers. Revista de la Real
Academia de Ciencias Exactas, Fı́sicas y Naturales, Serie A:
Matemáticas (RACSAM), 98(1), 2004. Special Issue on Sym-
bolic Computation in Logic and Artificial Intelligence.

[5] B. Beckert and V. Klebanov. Proof reuse for deductive pro-
gram verification. In J. Cuellar and Z. Liu, editors, Proceed-
ings, Software Engineering and Formal Methods (SEFM),
Beijing, China. IEEE CS Press, 2004.

[6] D. Harel, D. Kozen, and J. Tiuryn. Dynamic Logic. MIT Press,
2000.

[7] KeY Project. Website at www.key-project.org.
[8] K. Trentelman. Proving correctness of JAVACARD DL taclets

using Bali. In B. Aichernig and B. Beckert, editors, Proceed-
ings, 3rd IEEE International Conference on Software Engi-
neering and Formal Methods (SEFM). IEEE CS Press, 2005.

45

46

Software Certification Management

How Can Formal Methods Help?

Dieter Hutter
German Research Centre for Artificial Intelligence (DFKI GmbH),

Stuhlsatzenhausweg 3, 66123 Saarbrücken, Germany,
e-mail: hutter@dfki.de

Abstract

The formal development of industrial-size software
is an error-prone and therefore evolutionary process.
We report on our efforts to implement an assistance
tool that helps us to anticipate the effects of changes
in formal specification, to retrieve existing specifica-
tions and adapt them to new situations, to deter-
mine the “minimal” sets of proof obligations that
will newly arise or which proofs have to be re-tackled
again, and to adjust the old proofs to the new con-
ditions. As a result of this work we outline an un-
derlying theoretical framework for a general repos-
itory to maintain mathematical or logic-based doc-
uments while keeping track of the various semanti-
cal dependencies between different parts of various
types of documents (documentations, specifications,
proofs, etc).

1 Introduction

In the last decade Formal Methods have been success-
fully applied to specify and verify security or safety
critical systems. In the area of security, the formal
specification (and partly also verification) of smart-
cards became a necessity to comply with the security
requirements of their users. Car manufacturers start
to use formal methods to get the more and more com-
plex devices and sophisticated interaction between
them under control. Formal software development
paradigms are closely related to the waterfall model.

Starting with a formal (textual) specification, it is
translated into a logic based formalism, proof obli-
gations are calculated to guarantee the security or
safety properties, and finally these obligations have
to be proven usually with the help of model checking
or theorem proving. However in all applications so
far, development steps turned out to be flawed and
errors had to be corrected. The search for formally
correct software and the corresponding proofs is more
like a formal reflection on partial developments rather
than just a way to assure and prove more or less ev-
ident facts. Figure 1 illustrates this typical process.

Generating proof obligations +
structured database

Changing specification
due to proof failures Translation to a

logical representation

Specification
(Text)

Specification
(Text)

Deduction
(Proof Calculi)
Deduction
(Proof Calculi)

Logic Representation
(Development Graph)

Generating proof obligations +
structured database

Changing specification
due to proof failures Translation to a

logical representation

Specification
(Text)

Specification
(Text)

Deduction
(Proof Calculi)
Deduction
(Proof Calculi)

Logic Representation
(Development Graph)

Figure 1: Formal Development Cycle

1

47

2 Development Graphs

The painful experience of this evolutionary charac-
ter of applying formal methods resulted in the de-
velopment of the MAYA system [2, 3] to maintain
the formal software development process. We envi-
sioned an assistance tool that helps us to anticipate
the effects of changes in the specification, to retrieve
old specifications and adapt them to new situations,
to determine the “minimal” sets of proof obligations
that will newly arise or which proofs have to be re-
tackled again, and to adjust the old proofs to the new
conditions.

MAYA was a first step towards such a system. It
supports an evolutionary formal development since
it allows users to specify and verify developments in
a structured manner, incorporates a uniform mecha-
nism for verification in-the-large to exploit the struc-
ture of the specification, and maintains the verifi-
cation work already done when changing the spec-
ification. Maya relies on development graphs as a
uniform representation of structured specifications,
which enables the use of various (structured) speci-
fication languages like Casl [4], OMDoc and Vse-

SL [6] to formalize software development. To this
end Maya provides a generic interface to plug in ad-
ditional parsers for the support of other specification
languages. Moreover, Maya allows the integration of
different theorem provers to deal with proof obliga-
tions arising from the specification, i.e. to perform
verification in-the-small.

Textual specifications are translated into a struc-
tured logical representation called a development

graph [1, 5], which is based on the notions of con-
sequence relations and morphisms and makes arising
proof obligations explicit. The user can tackle these
proof obligations with the help of theorem provers
connected to Maya like Isabelle [12] or Inka [8].

A failure to prove one of these obligations usually
gives rise to modifications of the underlying specifica-
tion. Maya supports this evolutionary development
process as it calculates minimal changes to the logi-
cal representation readjusting it to a modified spec-
ification while preserving as much verification work
as possible. If necessary it also adjusts the database
of the interconnected theorem prover. Furthermore,

Maya communicates to the attached provers explicit
information how the axiomatization has changed and
also retrieves former proofs of the same problem (that
are now invalidated by the changes) to allow the the-
orem provers to reuse them. In turn, information
provided by the theorem provers about the computed
proof is used to optimize the maintenance of proofs
during the evolutionary development process.

3 Transformational Develop-

ment

While MAYA supports the adaption of formal de-
velopments to changed specifications, it primarily fo-
cuses on the computation of differences between old
and new specification and to maintain and propagate
these changes along the development cycle illustrated
in Figure 1. However, due to the complexity of this
process there is no guarantee that “simple” changes
in the specification will be adequately supported by
the system when it comes to the adaptation of proofs.
Starting with [14] we worked also on defining build-
ing blocks to transform developments as a whole. The
idea is to incorporate the knowledge about the way a
specification is changed into rules how to adapt the
existing proofs simultaneously. This results in a set
of basic transformations operating on developments
and changing specifications together with their proof
obligations and proofs in parallel and returning an
adapted new development. Typical examples are the
change of abstract datatypes by adding or removing
constructors, the change of parameters of function
and predicates, and the change of axioms by adding
or removing conditions [13]. Using these basic trans-
formations allows a developer to predict the effects of
his changes to the entire development since each of
these basic transformations will change specification,
proofs and proof obligations in a predetermined and
controlled fashion.

4 A More General Approach

Developing the MAYA system, which is specialized
to the maintenance of formal developments based on

2

48

algebraic specifications, we realized that the underly-
ing methodology is rather general and independent of
the used logical representation of specifications and
proofs but relies heavily on the structure of depen-
dencies between objects and properties and how these
dependencies can be decomposed along a given struc-
ture.

Nats
Spec N a t =
f r ee t y pe N a t : : = 0 | s u cc(N a t)

O p: ≤ : N a t , N a t → B o o l ea n
∀x : n a t 0 ≤ s u cc(x) . . .

O p: pl u s : N a t → N a t
∀x : n a t pl u s (0 , x) = x . . .

L i st o f Nats
Spec L i s t =
f r ee t y pe L i s t : : = n i l | co n s (N a t , L I ST)

O p: s o r t ed : L i s t → B o o l ea n
∀x , y : n a t , z : L i s t
s o r t ed (co n s (x , co n s (y , z))) → x ≤ y . . .

O p: r ev er s e : L i s t → L i s t
r ev er s e(n i l) = n i l . . .

Imports: Nats

Nats
Spec N a t =
f r ee t y pe N a t : : = 0 | s u cc(N a t)

O p: ≤ : N a t , N a t → B o o l ea n
∀x : n a t 0 ≤ s u cc(x) . . .

O p: pl u s : N a t → N a t
∀x : n a t pl u s (0 , x) = x . . .

L i st o f Nats
Spec L i s t =
f r ee t y pe L i s t : : = n i l | co n s (N a t , L I ST)

O p: s o r t ed : L i s t → B o o l ea n
∀x , y : n a t , z : L i s t
s o r t ed (co n s (x , co n s (y , z))) → x ≤ y . . .

O p: r ev er s e : L i s t → L i s t
r ev er s e(n i l) = n i l . . .

Imports: Nats

Figure 2: Semantic Dependencies in Specifications

In formal developments the semantics of (struc-
tured) objects depends on the semantics of their sub-
objects used for their definition (axiomatic dependen-
cies). While there is no way to scrutinize changes of
axiomatic dependencies in case of intentional (or pur-
poseful) changes of the development, there is a need
to inspect axiomatic dependencies in case of mechan-
ical changes as they occur, for instance, during the
(automatic) merge of two branches of a development.

Properties between (structured) objects can be
postulated and proven within a development. Sim-
ilar to the objects under consideration, the proofs
of properties about such objects are also structured.
Hence, such a proof depends on (or decomposes into)
properties of sub-objects which gives rise to deduced

dependencies between different properties. Changing
the development may render proofs invalid since ei-
ther some basic property does no longer hold or the
way the problem was decomposed is no longer appro-
priate.

The ability to decompose properties along the
structure of the concerned objects allows us to lo-
calize the effects of changes. A property between
structured objects (theories) is decomposed (accord-
ing to some decomposition rules) to properties be-
tween their sub-objects (local axioms). Typically,
these properties between structured objects have to

be independent of the environment in which these
objects might occur. As long as the concerned struc-
tured objects are unchanged any change of the over-
all development will not inflict the already proven or
postulated properties between these objects.

5 Repository Supporting Dis-

tributed Development

As a consequence we now work on a repository [7]
to maintain all sorts of dependencies between vari-
ous parts of a formal development or even informal
documents [9]. The main goal of such a logic-based
repository is to ease the development of mathemat-
ical or logic based knowledge consisting of entities
such as axioms, definitions, theorems, proofs and in-
formal documentations (sometimes including seman-
tic annotations). As the development of a software
project or of mathematical knowledge is distributed,
also the repository has to support distributed de-
velopments. We propose a CVS-like infrastructure
to determine the differences between two versions,
to calculate the necessary changes to update a lo-
cal repository to the current state, and to integrate
two rival developments into a merged variant. How-
ever while text-lines might be appropriate to struc-
ture pure text documents, this approach fails com-
pletely in logic-based documents. A single text line
may contain independent terms or a single term could
be spread over many text lines. Undiscovered “se-
mantic” conflicts may occur if two users change dif-
ferent text lines that are both part of the description
of a single term. Changing the arity of a signature
symbol in a document typically requires to change its
arity in all the occurrences of the symbol. Therefore,
we use the more semantically adequate representation
of acyclic directed graphs as the general structure un-
derlying the documents under consideration and re-
define the CVS notions of diff, patch and merge in
this context.

In a second phase we add semantical dependen-
cies between different parts of a document to detect
semantical conflicts, for instance, when merging dif-
ferent versions of a document that result from chang-

3

49

ing different but semantically still dependent parts of
a document by different users. When merging docu-
ments, semantic conflicts occur if semantically related
documents are changed independently by two users.
Decomposing dependencies along the structure of the
objects allows one again to narrow down potential se-
mantic conflicts: conflicts of composed objects only
arise if there is a conflict between dependent sub-
objects.

6 Conclusion

Inspecting the ideas of MAYA we discovered that
most of the work related to the management of
change does not require a deep knowledge of the se-
mantics of the underlying specification languages. In-
stead the management of change solely operates on
the structure of the objects under consideration and
on how proposed properties can be decomposed to
properties of their sub-objects.

The ultimate goal is to support generic structur-
ing mechanisms as they occur in various domains
by developing a system supporting these mechanisms
while outsourcing application specific parts into mod-
ules attachable to the system. This would allow us
to instantiate such a system for various purposes,
like for instance in formal methods (cf. MAYA [2]),
program development, or even maintaining informal
documents like, for instance, course materials (cf.
MMISS [9]).

References

[1] S. Autexier, D. Hutter, H. Mantel, and A. Schairer. To-
wards an evolutionary formal software-development using
Casl. In Recent Developments in Algebraic Development
Techniques, WADT’99, Bonas, France, Springer LNCS
1827, 2000.

[2] S. Autexier, D. Hutter, T. Mossakowski and A. Schairer.
The Development Graph Manager MAYA. In Proceedings
9th International Conference on Algebraic Methodology
And Software Technology, AMAST2002. Springer, LNCS
2422, 2002

[3] S. Autexier and D. Hutter. Mind the Gap - Maintaining
Formal Developments in MAYA, In Mechanising Math-
ematical Reasoning, Essays in honor of J.H. Siekmann,
Springer-Verlag, LNCS 2605, 2005

[4] B. Krieg-Brückner and P. Mosses (eds). CASL Reference
Manual, Springer, LNCS 2960, 2004

[5] D. Hutter. Management of Change in Verification Sys-
tems. In Proceedings 15th IEEE International Conference
on Automated Software Engineering, ASE-2000, IEEE
Computer Society, 2000.

[6] D. Hutter et al. Verification Support Environment (VSE),
Journal of High Integrity Systems, Vol. 1, pages 523–530,
1996.

[7] D. Hutter. Towards a Generic Management of Change. In
Workshop on Computer-Supported Mathematical Theory
Development, International Joint Conference on Auto-
mated Reasoning’04, Cork, Ireland, 2004

[8] S. Autexier, D. Hutter, H. Mantel, A. Schairer: Sys-
tem Description: INKA 5.0 - A Logic Voyager. In
H. Ganzinger, CADE-16, Springer, LNAI 1632, 1999.

[9] B. Krieg-Brückner, D. Hutter, C. Lüth, E. Melis,
A. Pötsch-Heffter, M. Roggenbach, J. Smaus and
M. Wirsing. Towards MultiMedia Instruction in Safe and
Secure Systems. In: Recent Trends in Algebraic Devel-
opment Techniques, (WADT-02). Springer, LNCS 2755,
2003

[10] T. Mossakowski and P. Hoffman and S. Autexier and
D. Hutter. Part IV: CASL Logic. In: [4], 2004

[11] T. Mossakowski, S. Autexier, and D. Hutter. Develop-
ment Graphs – Proof Management for Structured Speci-
fications. Journal of Logic and Algebraic Programming,
Special Issue on Algebraic Specification and Development
Techniques, Elsevier, 2005 (forthcoming)

[12] L.C. Paulson. Isabelle - A Generic Theorem Prover,
Springer LNCS 828, 1994.

[13] A. Schairer. Transformations of Specifications and Proofs
to Support an Evolutionary Formal Software Develop-
ment. PhD thesis (submitted), Saarland University, 2005

[14] A. Schairer and D. Hutter Proof Transformations for Evo-
lutionary Formal Software Development. In: Proceedings
of the 9th International Conference on Algebraic Method-
ology And Software Technology, AMAST-2002, LNCS
2422, 2002

4

50

Adelard paper for Software Certificate Management Workshop at ASE 2005 Conference

Application of a Commercial Assurance Case Tool to Support
Software Certification Services.

Luke Emmet <loe@adelard.com>
Sofia Guerra <aslg@adelard.com>

Adelard, Drysdale Building,
Northampton Square, London EC1V 0HB, UK

1 Introduction

Many industry sectors require a documented case that the system will meet its critical
requirements; this documented case is often called an “assurance case”. In the past, safety
justifications tended to be implicit and standards-based—compliance to accepted practice was
deemed to imply adequate safety. This approach works well in stable environments where best
practice is supported by extensive experience, but in those sectors adopting fast moving
technologies, a more explicit goal-based approach has been advocated, which can accommodate
change and alternative strategies to achieve the same goal.

Goal-based approaches have been increasingly adopted in a range of industry sectors, where claims
(or goals) are made about the system and arguments and evidence is presented to support that those
goals are met. Goal-based approaches are more flexible as they focus directly on the critical
requirements and they are more attuned to the ways in which sophisticated engineering arguments
are actually made.

Our contention is that developing a software certificate is akin to the process used for system
assurance argument. In fact, if software certification is taken as the “demonstration of the
reliability, safety, or security of software systems in such a way that it can be checked by an
independent authority” [7], there is no obvious clear distinction between software certification and
the development of a safety case in a regulated sector (although for non-regulated sectors, there
might not be the review by an independent authority).

Based on conceptual work by Toulmin [1], recent assurance and safety case notations have been
developed, including Claims-Argument-Evidence [2], [3] and Goal Structuring Notation [6].

Claim
Evidence

Evidence

Inference rule

Inference rule

Argument structure

Subclaim

Figure 1: Generic argument structure

The components of the assurance cases are similar to those of a software certification process. They
are:

• Claims about a property of the system or sub-system, such as functional properties, RAM
(Reliability, Availability, Maintainability) properties, security or usability.

• Argumentation nodes that describe the approach to satisfying the claim and provide the
rationale for how the collected evidence is to be used to support the claims being made about it.
We distinguish between deterministic or analytical (e.g. formal proof, exhaustive testing),
probabilistic (e.g. MTTF, reliability testing) and qualitative (e.g. compliance with QMS or with
safety standards).

51

• Process and product evidence for the software components, including design documentation
quality system documentation, testing evidence, COTS product evaluations, etc.

In Adelard we have been addressing the justification of software-based systems for 18 years. This
work has included research and development into the nature, structure and content of the
justification of software. The concepts we have developed have been especially used for justifying
safety of software-based systems, but these same concepts have been used for reasoning about
other system properties such as dependability, reliability and security [8].

2 The ASCE system

ASCE (The Assurance and Safety Case
Environment) is a flexible graphical
hypertext system used for the
development, review and maintenance of
assurance and safety cases and other
structured technical documentation [4],
[5]. It is a fully supported commercial1

tool currently being used by a wide range
of organisations for the development, and
assurance of safety-related systems.

Its main technical aspects are as follows:

• Flexible and intuitive graphical editor
supporting a range of notations, such
as Claims-Arguments Evidence and
GSN. Other notations can be supported through the use of domain-specific “schemas”.

• Each node contains a structured HTML narrative field supporting embedded fine grained cross-
references to other elements in the network, shared files and Internet resources.

• User extensible plugins to support specific applications using ASCE, and integration with other
technologies, including

o Validated content servicesso-called Dynamic Narrative Regions (DNRs). This
allows narrative to be generated from external sources and integrated into an ASCE
node narrative. ASCE checksums all DNR content and enables such external
dependencies to be validated to see if they have changed since last imported.

o Structural and content analysis services. For example algorithms can be developed that
identify all the evidence nodes that provide support for a selected claim. An impact
analysis algorithm could identify all claims reliant on a particular piece of evidence.

o Powerful reporting capabilities. Custom reports can be defined by using plugins,
which augment the standard capabilities of exporting to a collection of HTML files or
to a linear word processed document.

• Its XML data structure allows external analysis of ASCE files, and supports long-term use of
the data within an ASCE network.

1 ASCE is free for non commercial teaching and academic research purposes.

52

• Includes an ASCE difference tool, allowing the analyses of two versions of an ASCE file for
detecting structural and narrative differences between them. The ASCE difference tool can be
used to support review or audit activities.

3 Software Certification

The ASCE system as it is currently designed can be readily configured to support software
certification processes. Examples of scenarios of use are described in the following subsections.

3.1 Development of software certification case structure

The overall certification argument is defined in terms of claims being made for the system and its
component subsystems. ASCE supports the development and clear presentation of the strategy used
for justifying the software certification, showing how these claims will be met (and are
progressively met as part of the certification process) and the evidence that has been identified to
support the claims. The argument presented will ultimately be audited or reviewed (see Section 3.3
below).

3.2 Evidence integration

As the certification process evolves, the argumentation strategies may be developed and the
evidence that supports the claims will become available. In some cases, the argumentation strategy
may need to be modified if the evidence is stronger or weaker than originally envisaged.

One particular kind of evidence may be a certification case for subsystem elements. These can be
integrated as evidence nodes in the overall certification case using DNR elements in the node
narratives. This supports the notion of certificate hierarchies.

Overall, the diverse supporting evidence will be integrated using a number of methods:

• Narrative entered directly into the ASCE file.

• Hyperlinks to external files containing the evidence.

• DNR elements for critical evidence (e.g. testing evidence may need to be integrated, showing
the actual status of the test results). This provides the strongest level of validation to external
information sources.

A particular DNR might be developed that allows the certification case to particularly refer to the
full configuration of a software item. This might require a simple integration with the configuration
management tool that is being used.

3.3 Auditing and review

The certification case can be audited by reviewing the contents of the ASCE file. Given that
external evidence is directly linked in, it is possible for the auditor to graphically view, and
ultimately follow chains of dependencies from the claims being made down to the underlying
evidence. The ASCE difference tool might be used to review differences since the previous
version. The ASCE tool also supports clear notation for making which nodes have been audited and
completed or accepted. The auditor can easily keep track of what aspects of the arguments have
been accepted by looking at the nodes’ annotations of the top-level graphical argument.

3.4 Certificate publication and revocation

Although the certification case will be considered the formal controlled information artefact, it may
be required (e.g. for contractual purposes) to publish a paper document as a formal deliverable. In
this case, the standard reporting tools would be used to create such a publication.

53

Before publication, the software certificate manager would validate all the DNR elements in the
case. This would determine whether the underlying evidence had changed since it was last checked.

• Unchanged - if the certification case has been reviewed and audited, the certificate is still valid
and can be published against the particular build.

• Changed - the underlying evidence has changed. Therefore the certification case must be
reviewed to determine whether the top-level claims are still valid. The ASCE impact analysis
algorithms could be used to help the reviewer determine which claims depend on the evidence
changed and might need to be revisited.

4 Future directions

Given the extensible architecture of the tool, there are a number of aspects of use that can be
supported with additional notations and plugins. These include:

• Formal modelling and reasoning engines – we have already implemented notations and
algorithms (e.g. to support Fault trees) that formally analyse the structure of the representation
used and propagate information across it. We are actively investigating integration with
additional reasoning engines, although we anticipate there may be difficulty in faithfully in
implementing the full underlying semantics of the reasoning engine.

• Notation enhancements – each core notation schemas in ASCE has been tuned for a particular
purpose. One of our active areas of development is to enhance existing notations and develop
new ones to support particular forms of analysis, and to distinguish particular kinds of evidence
used (e.g. analytical, probabilistic and qualitative). Depending on the schema definition it is
possible for different display rules to visually amplify this information and present it as
decoration on the main display (e.g. as “traffic lights”).

• Modular cases and integration – as larger arguments are developed it is necessary to refactor
the argument and modularise it to allow for different elements to be maintained by different
stakeholders and to evolve separately. Existing facilities such as DNRs allow for changes to be
managed across the interfaces between such modules. However, more work is needed in the
future to explore the issues arising from such use in a way that supports pragmatic usage but at
the same time provides a useful degree of automated integration as the collection of
interdependent modules evolve.

5 Conclusions

Assurance and safety cases are mature concepts that already have wide use to support the assurance
of dependable systems. Such concepts can be applied to software certification, in that claims need
to be established and backed up by evidence about the product or its development process.

There are a number of open issues that are relevant for both assurance cases and software
certification. In [8] we summarised some of the research areas we have been working, which
included the use of formality and models to support the validation of the assurance case, the
relationship to standards and how the safety case goal-based approach can be deployed in other
application areas.

ASCE is a commercial tool used to develop and manage assurance and safety cases, and in this
paper we have outlined how it could be used to support the development and management of
software certificates. Together with the ASCE user community, we are actively developing the
product and its associated notations and plugins. Our aim is to support an increasingly wide range

54

of application scenarios associated with heterogeneous information management and the
demonstration of systems assurance.

6 References

[1] Toulmin, S.E. (1958) The Uses of Argument, Cambridge University Press, Cambridge, England.

[2] Bishop, P. & Bloomfield, R. A Methodology for Safety Case Development, Safety-Critical Systems
Symposium, Birmingham, UK, Feb 1998

[3] Adelard (1998) ASCAD—The Adelard Safety Case Development Manual ISBN 0 9533771 0 5

[4] ASCE home page: http://www.adelard.com/software/asce

[5] Luke Emmet & George Cleland, Graphical Notations, Narratives and Persuasion: a Pliant Systems
Approach to Hypertext Tool Design, in Proceedings of ACM Hypertext 2002 (HT’02), June 11-15,
2002, College Park, Maryland, USA.

[6] Kelly, T. Arguing Safety A Systematic Approach to Managing Safety Cases (1998). PhD Thesis,
available at http://www.cs.york.ac.uk/ftpdir/reports/YCST-99-05.ps.gz

[7] Call for Papers - ASE Workshop on Software Certificate Management (SoftCeMent)

[8] P.G. Bishop, Robin Bloomfield and Sofia Guerra. The future of goal-based assurance cases. In
Proceedings of Workshop on Assurance Cases. Supplemental Volume of the 2004 International
Conference on Dependable Systems and Networks, pp. 390-395, Florence, Italy, June 2004.

55

56

Author Index

Beckert, Bernhard . 41

Bormer, Thorsten . 41

Denney, Ewen . 1

Di Vito, Ben . 35

Emmet, Luke. .51

Fischer, Bernd. .1

Guerra, Sofia . 51

Harris, Peter . 27

Hutter, Dieter . 47

Ireland, Andrew . 31

Jones, Mark P. 7

Klebanov, Vladimir . 41

Kornecki, Andrew . 13

Parkin, Graeme. .27

Sherriff, Mark . 19

Whalen, Mike . 23

Williams, Laurie . 19

Xia, Songtao . 35

Zalewski, Janusz . 13

57

Notes

58

	parkin-harris-softcement05.pdf
	Introduction
	A solution
	Application
	The guide
	Development of the guide
	Recommended Technique
	Measurement Software Level
	Recommended Technique
	MSL 2
	Used

	How this is met

	Summary

